Mutations associated with human neural tube defects display disrupted planar cell polarity in Drosophila

  1. Ashley C Humphries
  2. Sonali Narang
  3. Marek Mlodzik  Is a corresponding author
  1. Icahn Medical School - Mount Sinai Hospital, United States
  2. NYU School of Medicine, United States

Abstract

Planar cell polarity (PCP) and neural tube defects (NTDs) are linked, with a subset of NTD patients found to harbour mutations in PCP genes, but there is limited data on whether these mutations disrupt PCP signaling in vivo. The core PCP gene Van Gogh (Vang), Vangl1/2 in mammals, is the most specific for PCP. We thus addressed potential causality of NTD-associated Vangl1/2 mutations, from either mouse or human patients, in Drosophila allowing intricate analysis of the PCP pathway. Introducing the respective mammalian mutations into Drosophila Vang revealed defective phenotypic and functional behaviors, with changes to Vang localization, post-translational modification, and mechanistic function, such as its ability to interact with PCP effectors. Our findings provide mechanistic insight into how different mammalian mutations contribute to developmental disorders and strengthen the link between PCP and NTD. Importantly, analyses of the human mutations revealed that each is a causative factor for the associated NTD.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2 and 5.

Article and author information

Author details

  1. Ashley C Humphries

    Cell, Developmental, and Regenerative Biology, Icahn Medical School - Mount Sinai Hospital, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sonali Narang

    Pathology, NYU School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Marek Mlodzik

    Cell, Developmental, and Regenerative Biology, Icahn Medical School - Mount Sinai Hospital, New York, United States
    For correspondence
    marek.mlodzik@mssm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0628-3465

Funding

National Institute of General Medical Sciences (R35 GM127103)

  • Marek Mlodzik

National Eye Institute (R01 EY013256)

  • Marek Mlodzik

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hugo J Bellen, Baylor College of Medicine, United States

Version history

  1. Received: November 12, 2019
  2. Accepted: March 31, 2020
  3. Accepted Manuscript published: April 1, 2020 (version 1)
  4. Version of Record published: April 23, 2020 (version 2)

Copyright

© 2020, Humphries et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,395
    views
  • 345
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ashley C Humphries
  2. Sonali Narang
  3. Marek Mlodzik
(2020)
Mutations associated with human neural tube defects display disrupted planar cell polarity in Drosophila
eLife 9:e53532.
https://doi.org/10.7554/eLife.53532

Share this article

https://doi.org/10.7554/eLife.53532

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Arya Y Nakhe, Prasanna K Dadi ... David A Jacobson
    Research Article

    The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and β-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell β-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.