Altered functional connectivity during speech perception in congenital amusia

  1. Kyle Jasmin  Is a corresponding author
  2. Frederic Dick
  3. Lauren Stewart
  4. Adam Taylor Tierney
  1. Birkbeck University of London, United Kingdom
  2. Goldsmiths University of London, United Kingdom
  3. Birkbeck, University of London, United Kingdom

Abstract

Individuals with congenital amusia have a lifelong history of unreliable pitch processing. Accordingly, they downweight pitch cues during speech perception and instead rely on other dimensions such as duration. We investigated the neural basis for this strategy. During fMRI, individuals with amusia (N=15) and controls (N=15) read sentences where a comma indicated a grammatical phrase boundary. They then heard two sentences spoken that differed only in pitch and/or duration cues, and selected the best match for the written sentence. Prominent reductions in functional connectivity were detected in the amusia group, between left prefrontal language-related regions and right hemisphere pitch-related regions, which reflected the between-group differences in cue weights in the same groups of listeners. Connectivity differences between these regions were not present during a control task. Our results indicate that the reliability of perceptual dimensions is linked with functional connectivity between frontal and perceptual regions, and suggest a compensatory mechanism.

Data availability

The data that support the findings of this study are openly available in the Birkbeck repository (https://researchdata.bbk.ac.uk/65/), as are the speech stimuli (Jasmin et al., 2020b; https://researchdata.bbk.ac.uk/37/). The speech task can be demoed at the following link: (Gorilla Open Materials; https://gorilla.sc/openmaterials/102786).

The following data sets were generated

Article and author information

Author details

  1. Kyle Jasmin

    Psychological Sciences, Birkbeck University of London, London, United Kingdom
    For correspondence
    kyle.jasmin.11@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9723-8207
  2. Frederic Dick

    Psychological Sciences, Birkbeck University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2933-3912
  3. Lauren Stewart

    Psychology, Goldsmiths University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Adam Taylor Tierney

    Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wellcome (109719/15/Z)

  • Adam Taylor Tierney

Leverhulme Trust (ECF-2017-151)

  • Kyle Jasmin

Society for Education, Music and Psychology Research

  • Kyle Jasmin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants gave informed consent and ethical approval was obtained from the UCL Research Ethics Committee (fMRI/2016/001) and the Birkbeck Department of Psychology Research Ethics Committee (161711).

Reviewing Editor

  1. Andrew J Oxenham, University of Minnesota, United States

Publication history

  1. Received: November 12, 2019
  2. Accepted: August 3, 2020
  3. Accepted Manuscript published: August 7, 2020 (version 1)
  4. Version of Record published: August 26, 2020 (version 2)

Copyright

© 2020, Jasmin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,063
    Page views
  • 123
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kyle Jasmin
  2. Frederic Dick
  3. Lauren Stewart
  4. Adam Taylor Tierney
(2020)
Altered functional connectivity during speech perception in congenital amusia
eLife 9:e53539.
https://doi.org/10.7554/eLife.53539

Further reading

    1. Developmental Biology
    2. Neuroscience
    Ashtyn T Wiltbank et al.
    Research Article

    Efficient neurotransmission is essential for organism survival and is enhanced by myelination. However, the genes that regulate myelin and myelinating glial cell development have not been fully characterized. Data from our lab and others demonstrates that cd59, which encodes for a small GPI-anchored glycoprotein, is highly expressed in developing zebrafish, rodent, and human oligodendrocytes (OLs) and Schwann cells (SCs), and that patients with CD59 dysfunction develop neurological dysfunction during early childhood. Yet, the function of Cd59 in the developing nervous system is currently undefined. In this study, we demonstrate that cd59 is expressed in a subset of developing SCs. Using cd59 mutant zebrafish, we show that developing SCs proliferate excessively and nerves may have reduced myelin volume, altered myelin ultrastructure, and perturbed node of Ranvier assembly. Finally, we demonstrate that complement activity is elevated in cd59 mutants and that inhibiting inflammation restores SC proliferation, myelin volume, and nodes of Ranvier to wildtype levels. Together, this work identifies Cd59 and developmental inflammation as key players in myelinating glial cell development, highlighting the collaboration between glia and the innate immune system to ensure normal neural development.

    1. Neuroscience
    Arefeh Sherafati et al.
    Research Article Updated

    Cochlear implants are neuroprosthetic devices that can restore hearing in people with severe to profound hearing loss by electrically stimulating the auditory nerve. Because of physical limitations on the precision of this stimulation, the acoustic information delivered by a cochlear implant does not convey the same level of acoustic detail as that conveyed by normal hearing. As a result, speech understanding in listeners with cochlear implants is typically poorer and more effortful than in listeners with normal hearing. The brain networks supporting speech understanding in listeners with cochlear implants are not well understood, partly due to difficulties obtaining functional neuroimaging data in this population. In the current study, we assessed the brain regions supporting spoken word understanding in adult listeners with right unilateral cochlear implants (n=20) and matched controls (n=18) using high-density diffuse optical tomography (HD-DOT), a quiet and non-invasive imaging modality with spatial resolution comparable to that of functional MRI. We found that while listening to spoken words in quiet, listeners with cochlear implants showed greater activity in the left prefrontal cortex than listeners with normal hearing, specifically in a region engaged in a separate spatial working memory task. These results suggest that listeners with cochlear implants require greater cognitive processing during speech understanding than listeners with normal hearing, supported by compensatory recruitment of the left prefrontal cortex.