1. Neuroscience
Download icon

Altered functional connectivity during speech perception in congenital amusia

  1. Kyle Jasmin  Is a corresponding author
  2. Frederic Dick
  3. Lauren Stewart
  4. Adam Taylor Tierney
  1. Birkbeck University of London, United Kingdom
  2. Goldsmiths University of London, United Kingdom
  3. Birkbeck, University of London, United Kingdom
Research Article
  • Cited 0
  • Views 648
  • Annotations
Cite this article as: eLife 2020;9:e53539 doi: 10.7554/eLife.53539


Individuals with congenital amusia have a lifelong history of unreliable pitch processing. Accordingly, they downweight pitch cues during speech perception and instead rely on other dimensions such as duration. We investigated the neural basis for this strategy. During fMRI, individuals with amusia (N=15) and controls (N=15) read sentences where a comma indicated a grammatical phrase boundary. They then heard two sentences spoken that differed only in pitch and/or duration cues, and selected the best match for the written sentence. Prominent reductions in functional connectivity were detected in the amusia group, between left prefrontal language-related regions and right hemisphere pitch-related regions, which reflected the between-group differences in cue weights in the same groups of listeners. Connectivity differences between these regions were not present during a control task. Our results indicate that the reliability of perceptual dimensions is linked with functional connectivity between frontal and perceptual regions, and suggest a compensatory mechanism.

Article and author information

Author details

  1. Kyle Jasmin

    Psychological Sciences, Birkbeck University of London, London, United Kingdom
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9723-8207
  2. Frederic Dick

    Psychological Sciences, Birkbeck University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2933-3912
  3. Lauren Stewart

    Psychology, Goldsmiths University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Adam Taylor Tierney

    Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.


Wellcome (109719/15/Z)

  • Adam Taylor Tierney

Leverhulme Trust (ECF-2017-151)

  • Kyle Jasmin

Society for Education, Music and Psychology Research

  • Kyle Jasmin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Human subjects: All participants gave informed consent and ethical approval was obtained from the UCL Research Ethics Committee (fMRI/2016/001) and the Birkbeck Department of Psychology Research Ethics Committee (161711).

Reviewing Editor

  1. Andrew J Oxenham, University of Minnesota, United States

Publication history

  1. Received: November 12, 2019
  2. Accepted: August 3, 2020
  3. Accepted Manuscript published: August 7, 2020 (version 1)
  4. Version of Record published: August 26, 2020 (version 2)


© 2020, Jasmin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 648
    Page views
  • 89
  • 0

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Lawrence Huang et al.
    Tools and Resources

    Fluorescent calcium indicators are often used to investigate neural dynamics, but the relationship between fluorescence and action potentials (APs) remains unclear. Most APs can be detected when the soma almost fills the microscope's field of view, but calcium indicators are often used to image populations of neurons, necessitating a large field of view, generating fewer photons per neuron, and compromising AP detection. Here we characterized the AP-fluorescence transfer function in vivo for 48 layer 2/3 pyramidal neurons in primary visual cortex, with simultaneous calcium imaging and cell-attached recordings from transgenic mice expressing GCaMP6s or GCaMP6f. While most APs were detected under optimal conditions, under conditions typical of population imaging studies only a minority of 1AP and 2AP events were detected (often <10% and ~20-30%, respectively), emphasizing the limits of AP detection under more realistic imaging conditions.

    1. Neuroscience
    Ma Feilong et al.
    Research Article

    Intelligent thought is the product of efficient neural information processing, which is embedded in fine-grained, topographically-organized population responses and supported by fine-grained patterns of connectivity among cortical fields. Previous work on the neural basis of intelligence, however, has focused on coarse-grained features of brain anatomy and function, because cortical topographies are highly idiosyncratic at a finer scale, obscuring individual differences in fine-grained connectivity patterns. We used a computational algorithm, hyperalignment, to resolve these topographic idiosyncrasies, and found that predictions of general intelligence based on fine-grained (vertex-by-vertex) connectivity patterns were markedly stronger than predictions based on coarse-grained (region-by-region) patterns. Intelligence was best predicted by fine-grained connectivity in the default and frontoparietal cortical systems, both of which are associated with self-generated thought. Previous work overlooked fine-grained architecture because existing methods couldn't resolve idiosyncratic topographies, preventing investigation where the keys to the neural basis of intelligence are more likely to be found.