Polypyrimidine tract binding proteins are essential for B cell development

  1. Elisa Monzón-Casanova  Is a corresponding author
  2. Louise S Matheson
  3. Kristina Tabbada
  4. Kathi Zarnack
  5. Christopher WJ Smith
  6. Martin Turner  Is a corresponding author
  1. The Babraham Institute, United Kingdom
  2. Goethe University Frankfurt, Germany
  3. University of Cambridge, United Kingdom

Abstract

Polypyrimidine Tract Binding Protein 1 (PTBP1) is a RNA-binding protein (RBP) expressed throughout B cell development. Deletion of Ptbp1 in mouse pro-B cells results in upregulation of PTBP2 and normal B cell development. We show that PTBP2 compensates for PTBP1 in B cell ontogeny as deletion of both Ptbp1 and Ptbp2 results in a complete block at the pro-B cell stage and a lack of mature B cells. In pro-B cells PTBP1 ensures precise synchronisation of the activity of cyclin dependent kinases at distinct stages of the cell cycle, suppresses S-phase entry and promotes progression into mitosis. PTBP1 controls mRNA abundance and alternative splicing of important cell cycle regulators including CYCLIN-D2, c-MYC, p107 and CDC25B. Our results reveal a previously unrecognised mechanism mediated by a RBP that is essential for B cell ontogeny and integrates transcriptional and post-translational determinants of progression through the cell cycle.

Data availability

mRNAseq libraries and iCLIP analysis generated in this study have been deposited in GEO and can be accessed with the GSE136882 accession code at GEO. Mitogen-activated primary B cell mRNAseq libraries were previously reported and can be accessed with the GSM1520115, GSM1520116, GSM1520117and GSM1520118 accession codes in GEO.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Elisa Monzón-Casanova

    Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
    For correspondence
    elisa.monzon-casanova@babraham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Louise S Matheson

    Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Kristina Tabbada

    Next Generation Sequencing Facility, The Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Kathi Zarnack

    Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3527-3378
  5. Christopher WJ Smith

    Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2753-3398
  6. Martin Turner

    Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
    For correspondence
    martin.turner@babraham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3801-9896

Funding

Biotechnology and Biological Sciences Research Council (BB/J00152X/1)

  • Martin Turner

Biotechnology and Biological Sciences Research Council (BB/P01898X/1)

  • Elisa Monzón-Casanova
  • Martin Turner

Biotechnology and Biological Sciences Research Council (BBS/E/B/000C0407)

  • Martin Turner

Biotechnology and Biological Sciences Research Council (BBS/E/B/000C0427)

  • Martin Turner

Wellcome (200823/Z/16/Z)

  • Martin Turner

European Cooperation in Science and Technology (CA17103)

  • Elisa Monzón-Casanova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Douglas L Black, University of California, Los Angeles, United States

Ethics

Animal experimentation: Mice were bred and maintained in the Babraham Institute Biological Support Unit. Since the opening of this barrier facility (2009), no primary pathogens or additional agents listed in the FELASA recommendations have been confirmed during health monitoring surveys of the stock holding rooms. Ambient temperature was ~19-21{degree sign}C and relative humidity 52%. Lighting was provided on a 12-hour light: 12-hour dark cycle including 15 min 'dawn' and 'dusk' periods of subdued lighting. After weaning, mice were transferred to individually ventilated cages with 1-5 mice per cage. Mice were fed CRM (P) VP diet (Special Diet Services) ad libitum and received seeds (e.g. sunflower, millet) at the time of cage-cleaning as part of their environmental enrichment. All mouse experimentation was approved by the Babraham Institute Animal Welfare and Ethical Review Body (UK Home Office Project Licence /P4D4AF812). Animal husbandry and experimentation complied with existing European Union and United Kingdom Home Office legislation and local standards.

Version history

  1. Received: November 13, 2019
  2. Accepted: February 20, 2020
  3. Accepted Manuscript published: February 21, 2020 (version 1)
  4. Version of Record published: March 5, 2020 (version 2)

Copyright

© 2020, Monzón-Casanova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,518
    views
  • 317
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elisa Monzón-Casanova
  2. Louise S Matheson
  3. Kristina Tabbada
  4. Kathi Zarnack
  5. Christopher WJ Smith
  6. Martin Turner
(2020)
Polypyrimidine tract binding proteins are essential for B cell development
eLife 9:e53557.
https://doi.org/10.7554/eLife.53557

Share this article

https://doi.org/10.7554/eLife.53557

Further reading

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Maria L Adelus, Jiacheng Ding ... Casey E Romanoski
    Research Article

    Heterogeneity in endothelial cell (EC) sub-phenotypes is becoming increasingly appreciated in atherosclerosis progression. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Multiomic profiling concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on six distinct primary cultures of human aortic ECs (HAECs) exposed to activating environments characteristic of the atherosclerotic microenvironment in vitro. Meta-analysis of single-cell transcriptomes across 17 human ex vivo arterial specimens was performed and two computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in vitro and ex vivo cell profiles. HAEC cultures were reproducibly populated by four major clusters with distinct pathway enrichment profiles and modest heterogeneous responses: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-mesenchymal. Quantitative comparisons between in vitro and ex vivo transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease (CAD)-associated single-nucleotide polymorphisms from Genome Wide Association Studies (GWAS), suggesting that these cell phenotypes harbor CAD-modulating mechanisms. Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the perturbations used here only modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopulations between in vitro and ex vivo models should pave the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state decisions.