HOPS recognizes each SNARE, assembling ternary trans-complexes for rapid fusion upon engagement with the 4th SNARE

  1. Hongki Song
  2. Amy S Orr
  3. Miriam Lee
  4. Max E Harner
  5. William T Wickner  Is a corresponding author
  1. Geisel School of Medicine at Dartmouth, United States

Abstract

Yeast vacuole fusion requires R-SNARE, Q-SNAREs, and HOPS. A HOPS SM-family subunit binds the R- and Qa-SNAREs. We now report that HOPS binds each of the four SNAREs. HOPS catalyzes fusion when the Q-SNAREs are not pre-assembled, ushering them into a functional complex. Co-incubation of HOPS, proteoliposomes bearing R-SNARE, and proteoliposomes with any two Q-SNAREs yields a rapid-fusion complex with 3 SNAREs in a trans-assembly. The missing Q-SNARE then induces sudden fusion. HOPS can 'template' SNARE complex assembly through SM recognition of R- and Qa-SNAREs. Though the Qa-SNARE is essential for spontaneous SNARE assembly, HOPS also assembles a rapid-fusion complex between R- and QbQc-SNARE proteoliposomes in the absence of Qa-SNARE, awaiting Qa for fusion. HOPS-dependent fusion is saturable at low concentrations of each Q-SNARE, showing binding site functionality. HOPS thus tethers membranes, recognizes the R-SNARE, and recognizes Qa or Qb/Qc SNAREs, assembling R+Qa or R+QbQc rapid fusion intermediates.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 3, 4, 5, 6, 8, 9 and 10.N/A

Article and author information

Author details

  1. Hongki Song

    Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3761-5434
  2. Amy S Orr

    Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Miriam Lee

    Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Max E Harner

    Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5513-1046
  5. William T Wickner

    Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
    For correspondence
    William.T.Wickner@dartmouth.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8431-0468

Funding

National Institutes of Health (R35GM118037)

  • William T Wickner

Deutsche Forschungsgemeinschaft (HA 7730/2-1)

  • Max E Harner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Song et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,662
    views
  • 244
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hongki Song
  2. Amy S Orr
  3. Miriam Lee
  4. Max E Harner
  5. William T Wickner
(2020)
HOPS recognizes each SNARE, assembling ternary trans-complexes for rapid fusion upon engagement with the 4th SNARE
eLife 9:e53559.
https://doi.org/10.7554/eLife.53559

Share this article

https://doi.org/10.7554/eLife.53559

Further reading

    1. Biochemistry and Chemical Biology
    Brennan J Wadsworth, Marina Leiwe ... Randall S Johnson
    Research Article

    Several metabolites have been shown to have independent and at times unexpected biological effects outside of their metabolic pathways. These include succinate, lactate, fumarate, and 2-hydroxyglutarate. 2-Hydroxybutyrate (2HB) is a byproduct of endogenous cysteine synthesis, produced during periods of cellular stress. 2HB rises acutely after exercise; it also rises during infection and is also chronically increased in a number of metabolic disorders. We show here that 2HB inhibits branched-chain aminotransferase enzymes, which in turn triggers a SIRT4-dependent shift in the compartmental abundance of protein ADP-ribosylation. The 2HB-induced decrease in nuclear protein ADP-ribosylation leads to a C/EBPβ-mediated transcriptional response in the branched-chain amino acid degradation pathway. This response to 2HB exposure leads to an improved oxidative capacity in vitro. We found that repeated injection with 2HB can replicate the improvement to oxidative capacity that occurs following exercise training. Together, we show that 2-HB regulates fundamental aspects of skeletal muscle metabolism.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Vikas Navratna, Arvind Kumar ... Shyamal Mosalaganti
    Research Article

    Degradation of heparan sulfate (HS), a glycosaminoglycan (GAG) comprised of repeating units of N-acetylglucosamine and glucuronic acid, begins in the cytosol and is completed in the lysosomes. Acetylation of the terminal non-reducing amino group of α-D-glucosamine of HS is essential for its complete breakdown into monosaccharides and free sulfate. Heparan-α-glucosaminide N-acetyltransferase (HGSNAT), a resident of the lysosomal membrane, catalyzes this essential acetylation reaction by accepting and transferring the acetyl group from cytosolic acetyl-CoA to terminal α-D-glucosamine of HS in the lysosomal lumen. Mutation-induced dysfunction in HGSNAT causes abnormal accumulation of HS within the lysosomes and leads to an autosomal recessive neurodegenerative lysosomal storage disorder called mucopolysaccharidosis IIIC (MPS IIIC). There are no approved drugs or treatment strategies to cure or manage the symptoms of, MPS IIIC. Here, we use cryo-electron microscopy (cryo-EM) to determine a high-resolution structure of the HGSNAT-acetyl-CoA complex, the first step in the HGSNAT-catalyzed acetyltransferase reaction. In addition, we map the known MPS IIIC mutations onto the structure and elucidate the molecular basis for mutation-induced HGSNAT dysfunction.