A big-data approach to understanding metabolic rate and response to obesity in laboratory mice

  1. June K Corrigan
  2. Deepti Ramachandran
  3. Yuchen He
  4. Colin J Palmer
  5. Michael J Jurczak
  6. Rui Chen
  7. Bingshan Li
  8. Randall H Friedline
  9. Jason K Kim
  10. Jon J Ramsey
  11. Louise Lantier
  12. Owen P McGuinness
  13. Mouse Metabolic Phenotyping Center Energy Balance Working Group
  14. Alexander Banks  Is a corresponding author
  1. Beth Israel Deaconess Medical Center and Harvard Medical School, United States
  2. University of Pittsburgh School of Medicine, United States
  3. Vanderbilt University School of Medicine, United States
  4. University of Massachusetts Medical School, United States
  5. University of California, Davis, United States

Abstract

Maintaining a healthy body weight requires an exquisite balance between energy intake and energy expenditure. To understand the genetic and environmental factors that contribute to the regulation of body weight, an important first step is to establish the normal range of metabolic values and primary sources contributing to variability. Energy metabolism is measured by powerful and sensitive indirect calorimetry devices. Analysis of nearly 10,000 wild-type mice from two large-scale experiments revealed that the largest variation in energy expenditure is due to body composition, ambient temperature, and institutional site of experimentation. We also analyze variation in 2,329 knockout strains and establish a reference for the magnitude of metabolic changes. Based on these findings, we provide suggestions for how best to design and conduct energy balance experiments in rodents. These recommendations will move us closer to the goal of a centralized physiological repository to foster transparency, rigor and reproducibility in metabolic physiology experimentation.

Data availability

All data and code can be found at https://github.com/banks-lab/Cal-Repository. Repository data includes complete indirect calorimetry data for MMPC experiments including CalR files for 4 sites at 0, 4, and 11 week trials, our MMPC analysis database, corrected IMPC database, and additional data for Figures 5 and 7. The R code to reproduce all figures is also included.

Article and author information

Author details

  1. June K Corrigan

    Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Deepti Ramachandran

    Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1113-1295
  3. Yuchen He

    Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Colin J Palmer

    Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael J Jurczak

    Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Rui Chen

    Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Bingshan Li

    Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Randall H Friedline

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jason K Kim

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jon J Ramsey

    Department of Molecular Biosciences, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Louise Lantier

    Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6620-4976
  12. Owen P McGuinness

    Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1778-3203
  13. Mouse Metabolic Phenotyping Center Energy Balance Working Group

  14. Alexander Banks

    Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
    For correspondence
    asbanks@bidmc.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1787-6925

Funding

National Institutes of Health (R01DK107717)

  • Alexander Banks

National Institutes of Health (U24-DK092993)

  • Jon J Ramsey

National Institutes of Health (U24-DK059635)

  • Michael J Jurczak

National Institutes of Health (U24-DK076174)

  • Owen P McGuinness

National Institutes of Health (U24-DK059637)

  • Owen P McGuinness

National Institutes of Health (U24-DK059630)

  • Owen P McGuinness

National Institutes of Health (U24-DK093000)

  • Jason K Kim

National Institutes of Health (U24-DK076169)

  • Alexander Banks

Swiss National Science Foundation (Postdoc mobility grant)

  • Deepti Ramachandran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: These studies were performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) at the site where they were performed.

Copyright

© 2020, Corrigan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,807
    views
  • 1,142
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. June K Corrigan
  2. Deepti Ramachandran
  3. Yuchen He
  4. Colin J Palmer
  5. Michael J Jurczak
  6. Rui Chen
  7. Bingshan Li
  8. Randall H Friedline
  9. Jason K Kim
  10. Jon J Ramsey
  11. Louise Lantier
  12. Owen P McGuinness
  13. Mouse Metabolic Phenotyping Center Energy Balance Working Group
  14. Alexander Banks
(2020)
A big-data approach to understanding metabolic rate and response to obesity in laboratory mice
eLife 9:e53560.
https://doi.org/10.7554/eLife.53560

Share this article

https://doi.org/10.7554/eLife.53560

Further reading

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.