A big-data approach to understanding metabolic rate and response to obesity in laboratory mice

  1. June K Corrigan
  2. Deepti Ramachandran
  3. Yuchen He
  4. Colin J Palmer
  5. Michael J Jurczak
  6. Rui Chen
  7. Bingshan Li
  8. Randall H Friedline
  9. Jason K Kim
  10. Jon J Ramsey
  11. Louise Lantier
  12. Owen P McGuinness
  13. Mouse Metabolic Phenotyping Center Energy Balance Working Group
  14. Alexander S Banks  Is a corresponding author
  1. Beth Israel Deaconess Medical Center and Harvard Medical School, United States
  2. University of Pittsburgh School of Medicine, United States
  3. Vanderbilt University School of Medicine, United States
  4. University of Massachusetts Medical School, United States
  5. University of California, Davis, United States

Abstract

Maintaining a healthy body weight requires an exquisite balance between energy intake and energy expenditure. To understand the genetic and environmental factors that contribute to the regulation of body weight, an important first step is to establish the normal range of metabolic values and primary sources contributing to variability. Energy metabolism is measured by powerful and sensitive indirect calorimetry devices. Analysis of nearly 10,000 wild-type mice from two large-scale experiments revealed that the largest variation in energy expenditure is due to body composition, ambient temperature, and institutional site of experimentation. We also analyze variation in 2,329 knockout strains and establish a reference for the magnitude of metabolic changes. Based on these findings, we provide suggestions for how best to design and conduct energy balance experiments in rodents. These recommendations will move us closer to the goal of a centralized physiological repository to foster transparency, rigor and reproducibility in metabolic physiology experimentation.

Data availability

All data and code can be found at https://github.com/banks-lab/Cal-Repository. Repository data includes complete indirect calorimetry data for MMPC experiments including CalR files for 4 sites at 0, 4, and 11 week trials, our MMPC analysis database, corrected IMPC database, and additional data for Figures 5 and 7. The R code to reproduce all figures is also included.

Article and author information

Author details

  1. June K Corrigan

    Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Deepti Ramachandran

    Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1113-1295
  3. Yuchen He

    Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Colin J Palmer

    Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael J Jurczak

    Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Rui Chen

    Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Bingshan Li

    Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Randall H Friedline

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jason K Kim

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jon J Ramsey

    Department of Molecular Biosciences, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Louise Lantier

    Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6620-4976
  12. Owen P McGuinness

    Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1778-3203
  13. Mouse Metabolic Phenotyping Center Energy Balance Working Group

  14. Alexander S Banks

    Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
    For correspondence
    asbanks@bidmc.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1787-6925

Funding

National Institutes of Health (R01DK107717)

  • Alexander S Banks

National Institutes of Health (U24-DK092993)

  • Jon J Ramsey

National Institutes of Health (U24-DK059635)

  • Michael J Jurczak

National Institutes of Health (U24-DK076174)

  • Owen P McGuinness

National Institutes of Health (U24-DK059637)

  • Owen P McGuinness

National Institutes of Health (U24-DK059630)

  • Owen P McGuinness

National Institutes of Health (U24-DK093000)

  • Jason K Kim

National Institutes of Health (U24-DK076169)

  • Alexander S Banks

Swiss National Science Foundation (Postdoc mobility grant)

  • Deepti Ramachandran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: These studies were performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) at the site where they were performed.

Copyright

© 2020, Corrigan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.53560

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.