MEIS-mediated suppression of human prostate cancer growth and metastasis through HOXB13-dependent regulation of proteoglycans

  1. Calvin VanOpstall
  2. Srikanth Perike
  3. Hannah Brechka
  4. Marc Gillard
  5. Sophia Lamperis
  6. Baizhen Zhu
  7. Ryan Brown
  8. Raj Bhanvadia
  9. Donald J Vander Griend  Is a corresponding author
  1. The University of Chicago, United States
  2. The University of Illinois at Chicago, United States

Abstract

The molecular roles of HOX transcriptional activity in human prostate epithelial cells remain unclear, impeding the implementation of new treatment strategies for cancer prevention and therapy. MEIS proteins are transcription factors that bind and direct HOX protein activity. MEIS proteins are putative tumor suppressors that are frequently silenced in aggressive forms of prostate cancer. Here we show that MEIS1 expression is sufficient to decrease proliferation and metastasis of prostate cancer cells in vitro and in vivo murine xenograft models. HOXB13 deletion demonstrates that the tumor-suppressive activity of MEIS1 is dependent on HOXB13. Integration of ChIP-seq and RNA-seq data revealed direct and HOXB13-dependent regulation of proteoglycans including decorin (DCN) as a mechanism of MEIS1-driven tumor suppression. These results define and underscore the importance of MEIS1-HOXB13 transcriptional regulation in suppressing prostate cancer progression and provide a mechanistic framework for the investigation of HOXB13 mutants and oncogenic cofactors when MEIS1/2 are silenced.

Data availability

RNA-seq and ChIP-seq raw and analyzed data have been deposited at the Gene Expression Omnibus and Sequence Read Archive under the accession number GSE132717.

The following previously published data sets were used

Article and author information

Author details

  1. Calvin VanOpstall

    Ben May Institute for Cancer Research, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Srikanth Perike

    Pathology, The University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hannah Brechka

    Surgery, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Marc Gillard

    Surgery, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sophia Lamperis

    Pathology, The University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Baizhen Zhu

    Surgery, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ryan Brown

    Pathology, The University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Raj Bhanvadia

    Pritzker School of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Donald J Vander Griend

    Pathology, The University of Illinois at Chicago, Chicago, United States
    For correspondence
    dvanderg@uic.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4421-5698

Funding

U.S. Department of Defense (PC130587)

  • Donald J Vander Griend

U.S. Department of Defense (PC180414)

  • Donald J Vander Griend

National Institutes of Health (P50 CA180995)

  • Donald J Vander Griend

National Institutes of Health (T32 CA009594)

  • Calvin VanOpstall
  • Hannah Brechka
  • Donald J Vander Griend

National Institutes of Health (F31CA232651)

  • Calvin VanOpstall

National Institutes of Health (P30CA014599)

  • Donald J Vander Griend

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies were carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the University of Chicago Institutional Animal Care and Use Committee (IACUC) (protocol #72231) as well as by the University of Illinois at Chicago IACUC (protocol #18-100).

Copyright

© 2020, VanOpstall et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 25,755
    views
  • 305
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Calvin VanOpstall
  2. Srikanth Perike
  3. Hannah Brechka
  4. Marc Gillard
  5. Sophia Lamperis
  6. Baizhen Zhu
  7. Ryan Brown
  8. Raj Bhanvadia
  9. Donald J Vander Griend
(2020)
MEIS-mediated suppression of human prostate cancer growth and metastasis through HOXB13-dependent regulation of proteoglycans
eLife 9:e53600.
https://doi.org/10.7554/eLife.53600

Share this article

https://doi.org/10.7554/eLife.53600

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Simei Go, Constantinos Demetriou ... Eric O Neill
    Research Article

    The immunosuppressive microenvironment in pancreatic ductal adenocarcinoma (PDAC) prevents tumor control and strategies to restore anti-cancer immunity (i.e. by increasing CD8 T-cell activity) have had limited success. Here, we demonstrate how inducing localized physical damage using ionizing radiation (IR) unmasks the benefit of immunotherapy by increasing tissue-resident natural killer (trNK) cells that support CD8 T activity. Our data confirms that targeting mouse orthotopic PDAC tumors with IR together with CCR5 inhibition and PD1 blockade reduces E-cadherin positive tumor cells by recruiting a hypoactive NKG2D-ve NK population, phenotypically reminiscent of trNK cells, that supports CD8 T-cell involvement. We show an equivalent population in human single-cell RNA sequencing (scRNA-seq) PDAC cohorts that represents immunomodulatory trNK cells that could similarly support CD8 T-cell levels in a cDC1-dependent manner. Importantly, a trNK signature associates with survival in PDAC and other solid malignancies revealing a potential beneficial role for trNK in improving adaptive anti-tumor responses and supporting CCR5 inhibitor (CCR5i)/αPD1 and IR-induced damage as a novel therapeutic approach.

    1. Cancer Biology
    Hyungtai Sim, Hyun Jung Park ... Murim Choi
    Research Article

    Clonal hematopoiesis of indeterminate potential (CHIP) allows estimation of clonal dynamics and documentation of somatic mutations in the hematopoietic system. Recent studies utilizing large cohorts of the general population and patients have revealed significant associations of CHIP burden with age and disease status, including in cancer and chronic diseases. An increasing number of cancer patients are treated with immune checkpoint inhibitors (ICIs), but the association of ICI response in non-small cell lung cancer (NSCLC) patients with CHIP burden remains to be determined. We collected blood samples from 100 metastatic NSCLC patients before and after ICI for high-depth sequencing of the CHIP panel and 63 samples for blood single-cell RNA sequencing. Whole exome sequencing was performed in an independent replication cohort of 180 patients. The impact of CHIP status on the immunotherapy response was not significant. However, metastatic lung cancer patients showed higher CHIP prevalence (44/100 for patients vs. 5/42 for controls; p = 0.01). In addition, lung squamous cell carcinoma (LUSC) patients showed increased burden of larger clones compared to lung adenocarcinoma (LUAD) patients (8/43 for LUSC vs. 2/50 for LUAD; p = 0.04). Furthermore, single-cell RNA-seq analysis of the matched patients showed significant enrichment of inflammatory pathways mediated by NF-κB in myeloid clusters of the severe CHIP group. Our findings suggest minimal involvement of CHIP mutation and clonal dynamics during immunotherapy but a possible role of CHIP as an indicator of immunologic response in NSCLC patients.