MEIS-mediated suppression of human prostate cancer growth and metastasis through HOXB13-dependent regulation of proteoglycans

  1. Calvin VanOpstall
  2. Srikanth Perike
  3. Hannah Brechka
  4. Marc Gillard
  5. Sophia Lamperis
  6. Baizhen Zhu
  7. Ryan Brown
  8. Raj Bhanvadia
  9. Donald J Vander Griend  Is a corresponding author
  1. The University of Chicago, United States
  2. The University of Illinois at Chicago, United States

Abstract

The molecular roles of HOX transcriptional activity in human prostate epithelial cells remain unclear, impeding the implementation of new treatment strategies for cancer prevention and therapy. MEIS proteins are transcription factors that bind and direct HOX protein activity. MEIS proteins are putative tumor suppressors that are frequently silenced in aggressive forms of prostate cancer. Here we show that MEIS1 expression is sufficient to decrease proliferation and metastasis of prostate cancer cells in vitro and in vivo murine xenograft models. HOXB13 deletion demonstrates that the tumor-suppressive activity of MEIS1 is dependent on HOXB13. Integration of ChIP-seq and RNA-seq data revealed direct and HOXB13-dependent regulation of proteoglycans including decorin (DCN) as a mechanism of MEIS1-driven tumor suppression. These results define and underscore the importance of MEIS1-HOXB13 transcriptional regulation in suppressing prostate cancer progression and provide a mechanistic framework for the investigation of HOXB13 mutants and oncogenic cofactors when MEIS1/2 are silenced.

Data availability

RNA-seq and ChIP-seq raw and analyzed data have been deposited at the Gene Expression Omnibus and Sequence Read Archive under the accession number GSE132717.

The following previously published data sets were used

Article and author information

Author details

  1. Calvin VanOpstall

    Ben May Institute for Cancer Research, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Srikanth Perike

    Pathology, The University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hannah Brechka

    Surgery, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Marc Gillard

    Surgery, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sophia Lamperis

    Pathology, The University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Baizhen Zhu

    Surgery, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ryan Brown

    Pathology, The University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Raj Bhanvadia

    Pritzker School of Medicine, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Donald J Vander Griend

    Pathology, The University of Illinois at Chicago, Chicago, United States
    For correspondence
    dvanderg@uic.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4421-5698

Funding

U.S. Department of Defense (PC130587)

  • Donald J Vander Griend

U.S. Department of Defense (PC180414)

  • Donald J Vander Griend

National Institutes of Health (P50 CA180995)

  • Donald J Vander Griend

National Institutes of Health (T32 CA009594)

  • Calvin VanOpstall
  • Hannah Brechka
  • Donald J Vander Griend

National Institutes of Health (F31CA232651)

  • Calvin VanOpstall

National Institutes of Health (P30CA014599)

  • Donald J Vander Griend

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies were carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the University of Chicago Institutional Animal Care and Use Committee (IACUC) (protocol #72231) as well as by the University of Illinois at Chicago IACUC (protocol #18-100).

Copyright

© 2020, VanOpstall et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 25,788
    views
  • 308
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Calvin VanOpstall
  2. Srikanth Perike
  3. Hannah Brechka
  4. Marc Gillard
  5. Sophia Lamperis
  6. Baizhen Zhu
  7. Ryan Brown
  8. Raj Bhanvadia
  9. Donald J Vander Griend
(2020)
MEIS-mediated suppression of human prostate cancer growth and metastasis through HOXB13-dependent regulation of proteoglycans
eLife 9:e53600.
https://doi.org/10.7554/eLife.53600

Share this article

https://doi.org/10.7554/eLife.53600

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Hirokazu Kimura, Kamel Lahouel ... Nicholas Jason Roberts
    Research Article

    Interpretation of variants identified during genetic testing is a significant clinical challenge. In this study, we developed a high-throughput CDKN2A functional assay and characterized all possible human CDKN2A missense variants. We found that 17.7% of all missense variants were functionally deleterious. We also used our functional classifications to assess the performance of in silico models that predict the effect of variants, including recently reported models based on machine learning. Notably, we found that all in silico models performed similarly when compared to our functional classifications with accuracies of 39.5–85.4%. Furthermore, while we found that functionally deleterious variants were enriched within ankyrin repeats, we did not identify any residues where all missense variants were functionally deleterious. Our functional classifications are a resource to aid the interpretation of CDKN2A variants and have important implications for the application of variant interpretation guidelines, particularly the use of in silico models for clinical variant interpretation.

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.