Thioredoxin-1 distinctly promotes NF-κB target DNA binding and NLRP3 inflammasome activation independently of Txnip

  1. Jonathan Muri
  2. Helen Thut
  3. Qian Feng
  4. Manfred Kopf  Is a corresponding author
  1. ETH Zürich, Switzerland

Abstract

Antioxidant systems, such as the thioredoxin-1 (Trx1) pathway, ensure cellular redox homeostasis. However, how such systems regulate development and function of myeloid cells is barely understood. Here we show that in contrast to its critical role in T cells, the murine Trx1 system is dispensable for steady-state myeloid-cell hematopoiesis due to their capacity to tap the glutathione/glutaredoxin pathway for DNA biosynthesis. However, the Trx1 pathway instrumentally enables nuclear NF-kB DNA-binding and thereby pro-inflammatory responses in monocytes and dendritic cells. Moreover, independent of this activity, Trx1 is critical for NLRP3 inflammasome activation and IL-1b production in macrophages by detoxifying excessive ROS levels. Notably, we exclude the involvement of the Trx1 inhibitor Txnip as a redox-sensitive ligand of NLRP3 as previously proposed. Together, this study suggests that targeting Trx1 may be exploited to treat inflammatory diseases.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Jonathan Muri

    Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Helen Thut

    Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Qian Feng

    Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Manfred Kopf

    Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
    For correspondence
    manfred.kopf@biol.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0628-7140

Funding

ETH Zurich (ETH-23-16-2)

  • Manfred Kopf

Swiss National Science Foundation (310030B_182829)

  • Manfred Kopf

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the local animal ethics committee (Kantonales Veterinärsamt Zürich, licenses 25/2014, ZH054/18, ZH054/19 and ZH134/18), and per- formed according to local guidelines (TschV, Zurich) and the Swiss animal pro- tection law (TschG).

Copyright

© 2020, Muri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,144
    views
  • 414
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathan Muri
  2. Helen Thut
  3. Qian Feng
  4. Manfred Kopf
(2020)
Thioredoxin-1 distinctly promotes NF-κB target DNA binding and NLRP3 inflammasome activation independently of Txnip
eLife 9:e53627.
https://doi.org/10.7554/eLife.53627

Share this article

https://doi.org/10.7554/eLife.53627

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Ana Cristina Chang-Gonzalez, Aoi Akitsu ... Wonmuk Hwang
    Research Advance

    Increasing evidence suggests that mechanical load on the αβ T-cell receptor (TCR) is crucial for recognizing the antigenic peptide-bound major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination (Chang-Gonzalez et al., 2024). To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ∼15 pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.

    1. Biochemistry and Chemical Biology
    2. Immunology and Inflammation
    Pavla Nedbalová, Nikola Kaislerova ... Tomáš Doležal
    Research Article

    During parasitoid wasp infection, activated immune cells of Drosophila melanogaster larvae release adenosine to conserve nutrients for immune response. S-adenosylmethionine (SAM) is a methyl group donor for most methylations in the cell and is synthesized from methionine and ATP. After methylation, SAM is converted to S-adenosylhomocysteine, which is further metabolized to adenosine and homocysteine. Here, we show that the SAM transmethylation pathway is up-regulated during immune cell activation and that the adenosine produced by this pathway in immune cells acts as a systemic signal to delay Drosophila larval development and ensure sufficient nutrient supply to the immune system. We further show that the up-regulation of the SAM transmethylation pathway and the efficiency of the immune response also depend on the recycling of adenosine back to ATP by adenosine kinase and adenylate kinase. We therefore hypothesize that adenosine may act as a sensitive sensor of the balance between cell activity, represented by the sum of methylation events in the cell, and nutrient supply. If the supply of nutrients is insufficient for a given activity, adenosine may not be effectively recycled back into ATP and may be pushed out of the cell to serve as a signal to demand more nutrients.