Thioredoxin-1 distinctly promotes NF-κB target DNA binding and NLRP3 inflammasome activation independently of Txnip

  1. Jonathan Muri
  2. Helen Thut
  3. Qian Feng
  4. Manfred Kopf  Is a corresponding author
  1. ETH Zürich, Switzerland

Abstract

Antioxidant systems, such as the thioredoxin-1 (Trx1) pathway, ensure cellular redox homeostasis. However, how such systems regulate development and function of myeloid cells is barely understood. Here we show that in contrast to its critical role in T cells, the murine Trx1 system is dispensable for steady-state myeloid-cell hematopoiesis due to their capacity to tap the glutathione/glutaredoxin pathway for DNA biosynthesis. However, the Trx1 pathway instrumentally enables nuclear NF-kB DNA-binding and thereby pro-inflammatory responses in monocytes and dendritic cells. Moreover, independent of this activity, Trx1 is critical for NLRP3 inflammasome activation and IL-1b production in macrophages by detoxifying excessive ROS levels. Notably, we exclude the involvement of the Trx1 inhibitor Txnip as a redox-sensitive ligand of NLRP3 as previously proposed. Together, this study suggests that targeting Trx1 may be exploited to treat inflammatory diseases.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Jonathan Muri

    Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Helen Thut

    Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Qian Feng

    Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Manfred Kopf

    Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
    For correspondence
    manfred.kopf@biol.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0628-7140

Funding

ETH Zurich (ETH-23-16-2)

  • Manfred Kopf

Swiss National Science Foundation (310030B_182829)

  • Manfred Kopf

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the local animal ethics committee (Kantonales Veterinärsamt Zürich, licenses 25/2014, ZH054/18, ZH054/19 and ZH134/18), and per- formed according to local guidelines (TschV, Zurich) and the Swiss animal pro- tection law (TschG).

Reviewing Editor

  1. Tiffany Horng, ShanghaiTech University, China

Publication history

  1. Received: November 14, 2019
  2. Accepted: February 24, 2020
  3. Accepted Manuscript published: February 25, 2020 (version 1)
  4. Version of Record published: March 9, 2020 (version 2)

Copyright

© 2020, Muri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,165
    Page views
  • 313
    Downloads
  • 29
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathan Muri
  2. Helen Thut
  3. Qian Feng
  4. Manfred Kopf
(2020)
Thioredoxin-1 distinctly promotes NF-κB target DNA binding and NLRP3 inflammasome activation independently of Txnip
eLife 9:e53627.
https://doi.org/10.7554/eLife.53627

Further reading

    1. Immunology and Inflammation
    Dennis J Doorduijn et al.
    Research Article

    The Membrane Attack Complex (MAC or C5b-9) is an important effector of the immune system to kill invading microbes. MAC formation is initiated when complement enzymes on the bacterial surface convert complement component C5 into C5b. Although the MAC is a membrane-inserted complex, soluble forms of MAC (sMAC, or terminal complement complex (TCC)) are often detected in sera of patients suffering from infections. Consequently, sMAC has been proposed as a biomarker, but it remains unclear when and how it is formed during infections. Here, we studied mechanisms of MAC formation on different Gram-negative and Gram-positive bacteria and found that sMAC is primarily formed in human serum by bacteria resistant to MAC-dependent killing. Surprisingly, C5 was converted into C5b more potently by MAC-resistant compared to MAC-sensitive Escherichia coli strains. In addition, we found that MAC precursors are released from the surface of MAC-resistant bacteria during MAC assembly. Although release of MAC precursors from bacteria induced lysis of bystander human erythrocytes, serum regulators vitronectin (Vn) and clusterin (Clu) can prevent this. Combining size exclusion chromatography with mass spectrometry profiling, we show that sMAC released from bacteria in serum is a heterogeneous mixture of complexes composed of C5b-8, up to 3 copies of C9 and multiple copies of Vn and Clu. Altogether, our data provide molecular insight into how sMAC is generated during bacterial infections. This fundamental knowledge could form the basis for exploring the use of sMAC as biomarker.

    1. Immunology and Inflammation
    Karthik Chandiran et al.
    Research Article

    Transforming growth factor β (TGFβ) is an important differentiation factor for cytotoxic T lymphocytes (CTLs) and alters the expression levels of several of homing-receptors during infection. SMAD4 is part of the canonical signaling network used by members of the transforming growth factor family. For this study, genetically-modified mice were used to determine how SMAD4 and TGFβ receptor II (TGFβRII) participate in transcriptional-programing of pathogen-specific CTLs. We show that these molecules are essential components of opposing signaling mechanisms, and cooperatively regulate a collection of genes that determine whether specialized populations of pathogen-specific CTLs circulate around the body, or settle in peripheral tissues. TGFb uses a canonical SMAD-dependent signaling pathway to down-regulate Eomesodermin (EOMES), KLRG1 and CD62L, while CD103 is induced. Conversely, in vivo and in vitro data show that EOMES, KLRG1, CX3CR1 and CD62L are positively-regulated via SMAD4, while CD103 and Hobit are downregulated. Intravascular staining shows that signaling via SMAD4 promotes formation of terminally-differentiated CTLs that localize in the vasculature. Our data shows that inflammatory molecules play a key role in lineage-determination of pathogen-specific CTLs, and use SMAD-dependent signaling to alter the expression levels of multiple homing-receptors and transcription factors with known functions during memory formation.