1. Developmental Biology
Download icon

Ordered patterning of the sensory system is susceptible to stochastic features of gene expression

  1. Ritika Giri
  2. Dimitrios K Papadopoulos
  3. Diana M Posadas
  4. Hemanth K Potluri
  5. Pavel Tomancak
  6. Madhav Mani  Is a corresponding author
  7. Richard W Carthew  Is a corresponding author
  1. Northwestern University, United States
  2. University of Edinburgh, United Kingdom
  3. Max Planck Institute of Cell Biology and Genetics, Germany
Research Article
  • Cited 1
  • Views 1,048
  • Annotations
Cite this article as: eLife 2020;9:e53638 doi: 10.7554/eLife.53638

Abstract

Sensory neuron numbers and positions are precisely organized to accurately map environmental signals in the brain. This precision emerges from biochemical processes within and between cells that are inherently stochastic. We investigated impact of stochastic gene expression on pattern formation, focusing on senseless (sens), a key determinant of sensory fate in Drosophila. Perturbing microRNA regulation or genomic location of sens produced distinct noise signatures. Noise was greatly enhanced when both sens alleles were present in homologous loci such that each allele was regulated in trans by the other allele. This led to disordered patterning. In contrast, loss of microRNA repression of sens increased protein abundance but not sensory pattern disorder. This suggests that gene expression stochasticity is a critical feature that must be constrained during development to allow rapid yet accurate cell fate resolution.

Article and author information

Author details

  1. Ritika Giri

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8838-0818
  2. Dimitrios K Papadopoulos

    MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Diana M Posadas

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Hemanth K Potluri

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Pavel Tomancak

    Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2222-9370
  6. Madhav Mani

    Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, United States
    For correspondence
    madhav.mani@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Richard W Carthew

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    For correspondence
    r-carthew@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0343-0156

Funding

National Institutes of Health (R35GM118144)

  • Ritika Giri
  • Diana M Posadas
  • Hemanth K Potluri
  • Richard W Carthew

Simons Foundation (597491)

  • Madhav Mani
  • Richard W Carthew

National Science Foundation (1764421)

  • Madhav Mani
  • Richard W Carthew

Pew Charitable Trusts (Pew Latin American Fellows Program)

  • Diana M Posadas

Max Planck Society (MPI Funding)

  • Dimitrios K Papadopoulos
  • Pavel Tomancak

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Oliver Hobert, Howard Hughes Medical Institute, Columbia University, United States

Publication history

  1. Received: November 15, 2019
  2. Accepted: February 25, 2020
  3. Accepted Manuscript published: February 26, 2020 (version 1)
  4. Version of Record published: March 10, 2020 (version 2)

Copyright

© 2020, Giri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,048
    Page views
  • 174
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Bjoern Gaertner et al.
    Research Article Updated

    Long noncoding RNAs (lncRNAs) are a heterogenous group of RNAs, which can encode small proteins. The extent to which developmentally regulated lncRNAs are translated and whether the produced microproteins are relevant for human development is unknown. Using a human embryonic stem cell (hESC)-based pancreatic differentiation system, we show that many lncRNAs in direct vicinity of lineage-determining transcription factors (TFs) are dynamically regulated, predominantly cytosolic, and highly translated. We genetically ablated ten such lncRNAs, most of them translated, and found that nine are dispensable for pancreatic endocrine cell development. However, deletion of LINC00261 diminishes insulin+ cells, in a manner independent of the nearby TF FOXA2. One-by-one disruption of each of LINC00261's open reading frames suggests that the RNA, rather than the produced microproteins, is required for endocrine development. Our work highlights extensive translation of lncRNAs during hESC pancreatic differentiation and provides a blueprint for dissection of their coding and noncoding roles.

    1. Developmental Biology
    2. Medicine
    Md Rakibul Hasan et al.
    Research Article Updated

    Mutations in the gene encoding Ras-associated binding protein 23 (RAB23) cause Carpenter Syndrome, which is characterized by multiple developmental abnormalities including polysyndactyly and defects in skull morphogenesis. To understand how RAB23 regulates skull development, we generated Rab23-deficient mice that survive to an age where skeletal development can be studied. Along with polysyndactyly, these mice exhibit premature fusion of multiple sutures resultant from aberrant osteoprogenitor proliferation and elevated osteogenesis in the suture. FGF10-driven FGFR1 signaling is elevated in Rab23-/-sutures with a consequent imbalance in MAPK, Hedgehog signaling and RUNX2 expression. Inhibition of elevated pERK1/2 signaling results in the normalization of osteoprogenitor proliferation with a concomitant reduction of osteogenic gene expression, and prevention of craniosynostosis. Our results suggest a novel role for RAB23 as an upstream negative regulator of both FGFR and canonical Hh-GLI1 signaling, and additionally in the non-canonical regulation of GLI1 through pERK1/2.