Transverse sinus injections drive robust whole-brain expression of transgenes
Abstract
Convenient, efficient and fast whole-brain delivery of transgenes presents a persistent experimental challenge in neuroscience. Recent advances demonstrate whole-brain gene delivery by retro-orbital injection of virus, but slow and sparse expression and the large injection volumes required make this approach cumbersome, especially for developmental studies. We developed a novel method for efficient gene delivery across the central nervous system in neonatal mice and rats starting as early as P1 and persisting into adulthood. The method employs transverse sinus injections of 2-4μL of AAV9 at P0. Here, we describe how to use this method to label and/or genetically manipulate cells in the neonatal rat and mouse brain. The protocol is fast, simple, can be readily adopted by any laboratory, and utilizes the widely available AAV9 capsid. The procedure is adaptable for diverse experimental applications ranging from biochemistry, anatomical and functional mapping, gene expression, silencing, and editing.
Data availability
Source data files have been provided for Figure 1, Figure 4, and Figure 5
Article and author information
Author details
Funding
National Institutes of Health (1F32EY028869 - 01A1)
- Ali S Hamodi
National Institutes of Health (R01 EY015788,R01 EY023105,U01 NS094358,P30 EY026878,R01 MH111424)
- Michael Crair
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All experimental procedures are in accordance with National Institutes of Health guidelines and approved by Yale Institutional Animal Care and Use Committees (IACUC) protocol (#2017-11141). Animals are treated in compliance with the U.S. Department of Health and Human Services and Yale University School of Medicine. All surgery was performed under isoflurane anesthesia (>P4) or ice anesthesia (<P4)., and every effort made to minimize suffering.
Copyright
© 2020, Hamodi et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 9,772
- views
-
- 1,051
- downloads
-
- 34
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 34
- citations for umbrella DOI https://doi.org/10.7554/eLife.53639