Transverse sinus injections drive robust whole-brain expression of transgenes

  1. Ali S Hamodi  Is a corresponding author
  2. Aude Martinez Sabino
  3. N Dalton Fitzgerald
  4. Dionysia Moschou
  5. Michael Crair  Is a corresponding author
  1. Yale School of Medicine, United States
  2. University of Technology of Compiègne, France

Abstract

Convenient, efficient and fast whole-brain delivery of transgenes presents a persistent experimental challenge in neuroscience. Recent advances demonstrate whole-brain gene delivery by retro-orbital injection of virus, but slow and sparse expression and the large injection volumes required make this approach cumbersome, especially for developmental studies. We developed a novel method for efficient gene delivery across the central nervous system in neonatal mice and rats starting as early as P1 and persisting into adulthood. The method employs transverse sinus injections of 2-4μL of AAV9 at P0. Here, we describe how to use this method to label and/or genetically manipulate cells in the neonatal rat and mouse brain. The protocol is fast, simple, can be readily adopted by any laboratory, and utilizes the widely available AAV9 capsid. The procedure is adaptable for diverse experimental applications ranging from biochemistry, anatomical and functional mapping, gene expression, silencing, and editing.

Data availability

Source data files have been provided for Figure 1, Figure 4, and Figure 5

Article and author information

Author details

  1. Ali S Hamodi

    Department of Neuroscience, Yale School of Medicine, New Haven, United States
    For correspondence
    ali.hamodi@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8398-170X
  2. Aude Martinez Sabino

    Bioengineering, University of Technology of Compiègne, Compiègne, France
    Competing interests
    The authors declare that no competing interests exist.
  3. N Dalton Fitzgerald

    Department of Neuroscience, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7794-6898
  4. Dionysia Moschou

    Department of Neuroscience, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Crair

    Department of Neuroscience, Yale School of Medicine, New Haven, United States
    For correspondence
    michael.crair@yale.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (1F32EY028869 - 01A1)

  • Ali S Hamodi

National Institutes of Health (R01 EY015788,R01 EY023105,U01 NS094358,P30 EY026878,R01 MH111424)

  • Michael Crair

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures are in accordance with National Institutes of Health guidelines and approved by Yale Institutional Animal Care and Use Committees (IACUC) protocol (#2017-11141). Animals are treated in compliance with the U.S. Department of Health and Human Services and Yale University School of Medicine. All surgery was performed under isoflurane anesthesia (>P4) or ice anesthesia (<P4)., and every effort made to minimize suffering.

Copyright

© 2020, Hamodi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,268
    views
  • 1,007
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ali S Hamodi
  2. Aude Martinez Sabino
  3. N Dalton Fitzgerald
  4. Dionysia Moschou
  5. Michael Crair
(2020)
Transverse sinus injections drive robust whole-brain expression of transgenes
eLife 9:e53639.
https://doi.org/10.7554/eLife.53639

Share this article

https://doi.org/10.7554/eLife.53639

Further reading

    1. Developmental Biology
    Alexander S Campbell, Martin Minařík ... Clare VH Baker
    Research Article

    The lateral line system enables fishes and aquatic-stage amphibians to detect local water movement via mechanosensory hair cells in neuromasts, and many species to detect weak electric fields via electroreceptors (modified hair cells) in ampullary organs. Both neuromasts and ampullary organs develop from lateral line placodes, but the molecular mechanisms underpinning ampullary organ formation are understudied relative to neuromasts. This is because the ancestral lineages of zebrafish (teleosts) and Xenopus (frogs) independently lost electroreception. We identified Bmp5 as a promising candidate via differential RNA-seq in an electroreceptive ray-finned fish, the Mississippi paddlefish (Polyodon spathula; Modrell et al., 2017, eLife 6: e24197). In an experimentally tractable relative, the sterlet sturgeon (Acipenser ruthenus), we found that Bmp5 and four other Bmp pathway genes are expressed in the developing lateral line, and that Bmp signalling is active. Furthermore, CRISPR/Cas9-mediated mutagenesis targeting Bmp5 in G0-injected sterlet embryos resulted in fewer ampullary organs. Conversely, when Bmp signalling was inhibited by DMH1 treatment shortly before the formation of ampullary organ primordia, supernumerary ampullary organs developed. These data suggest that Bmp5 promotes ampullary organ development, whereas Bmp signalling via another ligand(s) prevents their overproduction. Taken together, this demonstrates opposing roles for Bmp signalling during ampullary organ formation.

    1. Developmental Biology
    Pablo Sanchez Bosch, Bomsoo Cho, Jeffrey D Axelrod
    Research Article

    The growth and survival of cells with different fitness, such as those with a proliferative advantage or a deleterious mutation, is controlled through cell competition. During development, cell competition enables healthy cells to eliminate less fit cells that could jeopardize tissue integrity, and facilitates the elimination of pre-malignant cells by healthy cells as a surveillance mechanism to prevent oncogenesis. Malignant cells also benefit from cell competition to promote their expansion. Despite its ubiquitous presence, the mechanisms governing cell competition, particularly those common to developmental competition and tumorigenesis, are poorly understood. Here, we show that in Drosophila, the planar cell polarity (PCP) protein Flamingo (Fmi) is required by winners to maintain their status during cell competition in malignant tumors to overtake healthy tissue, in early pre-malignant cells when they overproliferate among wildtype cells, in healthy cells when they later eliminate pre-malignant cells, and by supercompetitors as they compete to occupy excessive territory within wildtype tissues. ‘Would-be’ winners that lack Fmi are unable to overproliferate, and instead become losers. We demonstrate that the role of Fmi in cell competition is independent of PCP, and that it uses a distinct mechanism that may more closely resemble one used in other less well-defined functions of Fmi.