Enhancer architecture sensitizes cell-specific responses to Notch gene dose via a bind and discard mechanism

  1. Yi Kuang
  2. Ohad Golan
  3. Kristina Preusse
  4. Brittany Cain
  5. Collin J Christensen
  6. Joseph Salomone
  7. Ian Campbell
  8. FearGod V Okwubido-Williams
  9. Matthew R Hass
  10. Zhenyu Yuan
  11. Nathanel Eafergan
  12. Kenneth H Moberg
  13. Rhett A Kovall
  14. Raphael Kopan  Is a corresponding author
  15. David Sprinzak  Is a corresponding author
  16. Brian Gebelein  Is a corresponding author
  1. Cincinnati Children's Hospital Research Foundation, United States
  2. Tel Aviv University, Israel
  3. Cincinnati Children's Hospital Medical Center, United States
  4. University of Cincinnati, United States
  5. Emory University, United States
  6. Cincinnati Children's hospital, United States

Abstract

Notch pathway haploinsufficiency can cause severe developmental syndromes with highly variable penetrance. Currently, we have a limited mechanistic understanding of phenotype variability due to gene dosage. Here, we unexpectedly found that inserting an enhancer containing pioneer transcription factor sites coupled to Notch dimer sites can induce a subset of Notch haploinsufficiency phenotypes in Drosophila with wild type Notch gene dose. Using Drosophila genetics, we show that this enhancer induces Notch phenotypes in a Cdk8-dependent, transcription-independent manner. We further combined mathematical modeling with quantitative trait and expression analysis to build a model that describes how changes in Notch signal production versus degradation differentially impact cellular outcomes that require long versus short signal duration. Altogether, these findings support a 'bind and discard' mechanism in which enhancers with specific binding sites promote rapid Cdk8-dependent Notch turnover, and thereby reduce Notch-dependent transcription at other loci and sensitize tissues to gene dose based upon signal duration.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Yi Kuang

    Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1509-3620
  2. Ohad Golan

    Biochemistry, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Kristina Preusse

    Pediatrics - Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Brittany Cain

    Engineering, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Collin J Christensen

    Pediatrics - Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6932-5554
  6. Joseph Salomone

    Pediatrics - Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ian Campbell

    Engineering, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. FearGod V Okwubido-Williams

    Engineering, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Matthew R Hass

    Pediatrics - Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Zhenyu Yuan

    Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Nathanel Eafergan

    Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  12. Kenneth H Moberg

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Rhett A Kovall

    Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0520-1613
  14. Raphael Kopan

    Division of Developmental Biology, Cincinnati Children's hospital, Cincinnati, United States
    For correspondence
    raphael.kopan@cchmc.org
    Competing interests
    The authors declare that no competing interests exist.
  15. David Sprinzak

    Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
    For correspondence
    davidsp@post.tau.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6776-6957
  16. Brian Gebelein

    Pediatrics - Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    For correspondence
    brian.gebelein@cchmc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9791-9061

Funding

National Science Foundation (1715822)

  • David Sprinzak
  • Brian Gebelein

National Institutes of Health (CA163653)

  • Raphael Kopan

National Institutes of Health (CA178974)

  • Rhett A Kovall

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hugo J Bellen, Baylor College of Medicine, United States

Version history

  1. Received: November 15, 2019
  2. Accepted: April 15, 2020
  3. Accepted Manuscript published: April 16, 2020 (version 1)
  4. Version of Record published: May 11, 2020 (version 2)

Copyright

© 2020, Kuang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,134
    views
  • 336
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yi Kuang
  2. Ohad Golan
  3. Kristina Preusse
  4. Brittany Cain
  5. Collin J Christensen
  6. Joseph Salomone
  7. Ian Campbell
  8. FearGod V Okwubido-Williams
  9. Matthew R Hass
  10. Zhenyu Yuan
  11. Nathanel Eafergan
  12. Kenneth H Moberg
  13. Rhett A Kovall
  14. Raphael Kopan
  15. David Sprinzak
  16. Brian Gebelein
(2020)
Enhancer architecture sensitizes cell-specific responses to Notch gene dose via a bind and discard mechanism
eLife 9:e53659.
https://doi.org/10.7554/eLife.53659

Share this article

https://doi.org/10.7554/eLife.53659

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.

    1. Developmental Biology
    2. Evolutionary Biology
    Zhuqing Wang, Yue Wang ... Wei Yan
    Research Article

    Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.