Enhancer architecture sensitizes cell-specific responses to Notch gene dose via a bind and discard mechanism

  1. Yi Kuang
  2. Ohad Golan
  3. Kristina Preusse
  4. Brittany Cain
  5. Collin J Christensen
  6. Joseph Salomone
  7. Ian Campbell
  8. FearGod V Okwubido-Williams
  9. Matthew R Hass
  10. Zhenyu Yuan
  11. Nathanel Eafergan
  12. Kenneth H Moberg
  13. Rhett A Kovall
  14. Raphael Kopan  Is a corresponding author
  15. David Sprinzak  Is a corresponding author
  16. Brian Gebelein  Is a corresponding author
  1. Cincinnati Children's Hospital Research Foundation, United States
  2. Tel Aviv University, Israel
  3. Cincinnati Children's Hospital Medical Center, United States
  4. University of Cincinnati, United States
  5. Emory University, United States
  6. Cincinnati Children's hospital, United States

Abstract

Notch pathway haploinsufficiency can cause severe developmental syndromes with highly variable penetrance. Currently, we have a limited mechanistic understanding of phenotype variability due to gene dosage. Here, we unexpectedly found that inserting an enhancer containing pioneer transcription factor sites coupled to Notch dimer sites can induce a subset of Notch haploinsufficiency phenotypes in Drosophila with wild type Notch gene dose. Using Drosophila genetics, we show that this enhancer induces Notch phenotypes in a Cdk8-dependent, transcription-independent manner. We further combined mathematical modeling with quantitative trait and expression analysis to build a model that describes how changes in Notch signal production versus degradation differentially impact cellular outcomes that require long versus short signal duration. Altogether, these findings support a 'bind and discard' mechanism in which enhancers with specific binding sites promote rapid Cdk8-dependent Notch turnover, and thereby reduce Notch-dependent transcription at other loci and sensitize tissues to gene dose based upon signal duration.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Yi Kuang

    Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1509-3620
  2. Ohad Golan

    Biochemistry, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Kristina Preusse

    Pediatrics - Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Brittany Cain

    Engineering, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Collin J Christensen

    Pediatrics - Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6932-5554
  6. Joseph Salomone

    Pediatrics - Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ian Campbell

    Engineering, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. FearGod V Okwubido-Williams

    Engineering, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Matthew R Hass

    Pediatrics - Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Zhenyu Yuan

    Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Nathanel Eafergan

    Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  12. Kenneth H Moberg

    Department of Cell Biology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Rhett A Kovall

    Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0520-1613
  14. Raphael Kopan

    Division of Developmental Biology, Cincinnati Children's hospital, Cincinnati, United States
    For correspondence
    raphael.kopan@cchmc.org
    Competing interests
    The authors declare that no competing interests exist.
  15. David Sprinzak

    Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
    For correspondence
    davidsp@post.tau.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6776-6957
  16. Brian Gebelein

    Pediatrics - Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    For correspondence
    brian.gebelein@cchmc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9791-9061

Funding

National Science Foundation (1715822)

  • David Sprinzak
  • Brian Gebelein

National Institutes of Health (CA163653)

  • Raphael Kopan

National Institutes of Health (CA178974)

  • Rhett A Kovall

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Kuang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,249
    views
  • 344
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yi Kuang
  2. Ohad Golan
  3. Kristina Preusse
  4. Brittany Cain
  5. Collin J Christensen
  6. Joseph Salomone
  7. Ian Campbell
  8. FearGod V Okwubido-Williams
  9. Matthew R Hass
  10. Zhenyu Yuan
  11. Nathanel Eafergan
  12. Kenneth H Moberg
  13. Rhett A Kovall
  14. Raphael Kopan
  15. David Sprinzak
  16. Brian Gebelein
(2020)
Enhancer architecture sensitizes cell-specific responses to Notch gene dose via a bind and discard mechanism
eLife 9:e53659.
https://doi.org/10.7554/eLife.53659

Share this article

https://doi.org/10.7554/eLife.53659

Further reading

    1. Developmental Biology
    Alexander S Campbell, Martin Minařík ... Clare VH Baker
    Research Article

    The lateral line system enables fishes and aquatic-stage amphibians to detect local water movement via mechanosensory hair cells in neuromasts, and many species to detect weak electric fields via electroreceptors (modified hair cells) in ampullary organs. Both neuromasts and ampullary organs develop from lateral line placodes, but the molecular mechanisms underpinning ampullary organ formation are understudied relative to neuromasts. This is because the ancestral lineages of zebrafish (teleosts) and Xenopus (frogs) independently lost electroreception. We identified Bmp5 as a promising candidate via differential RNA-seq in an electroreceptive ray-finned fish, the Mississippi paddlefish (Polyodon spathula; Modrell et al., 2017, eLife 6: e24197). In an experimentally tractable relative, the sterlet sturgeon (Acipenser ruthenus), we found that Bmp5 and four other Bmp pathway genes are expressed in the developing lateral line, and that Bmp signalling is active. Furthermore, CRISPR/Cas9-mediated mutagenesis targeting Bmp5 in G0-injected sterlet embryos resulted in fewer ampullary organs. Conversely, when Bmp signalling was inhibited by DMH1 treatment shortly before the formation of ampullary organ primordia, supernumerary ampullary organs developed. These data suggest that Bmp5 promotes ampullary organ development, whereas Bmp signalling via another ligand(s) prevents their overproduction. Taken together, this demonstrates opposing roles for Bmp signalling during ampullary organ formation.

    1. Developmental Biology
    Pablo Sanchez Bosch, Bomsoo Cho, Jeffrey D Axelrod
    Research Article

    The growth and survival of cells with different fitness, such as those with a proliferative advantage or a deleterious mutation, is controlled through cell competition. During development, cell competition enables healthy cells to eliminate less fit cells that could jeopardize tissue integrity, and facilitates the elimination of pre-malignant cells by healthy cells as a surveillance mechanism to prevent oncogenesis. Malignant cells also benefit from cell competition to promote their expansion. Despite its ubiquitous presence, the mechanisms governing cell competition, particularly those common to developmental competition and tumorigenesis, are poorly understood. Here, we show that in Drosophila, the planar cell polarity (PCP) protein Flamingo (Fmi) is required by winners to maintain their status during cell competition in malignant tumors to overtake healthy tissue, in early pre-malignant cells when they overproliferate among wildtype cells, in healthy cells when they later eliminate pre-malignant cells, and by supercompetitors as they compete to occupy excessive territory within wildtype tissues. ‘Would-be’ winners that lack Fmi are unable to overproliferate, and instead become losers. We demonstrate that the role of Fmi in cell competition is independent of PCP, and that it uses a distinct mechanism that may more closely resemble one used in other less well-defined functions of Fmi.