The frequency gradient of human resting-state brain oscillations follows cortical hierarchies

  1. Keyvan Mahjoory  Is a corresponding author
  2. Jan-Mathijs Schoffelen
  3. Anne Keitel
  4. Joachim Gross  Is a corresponding author
  1. University of Muenster, Germany
  2. Radboud University Nijmegen, Netherlands
  3. University of Dundee, United Kingdom

Abstract

The human cortex is characterized by local morphological features such as cortical thickness, myelin content, and gene expression that change along the posterior-anterior axis. We investigated if some of these structural gradients are associated with a similar gradient in a prominent feature of brain activity - namely the frequency of oscillations. In resting-state MEG recordings from healthy participants (N=187) using mixed effect models, we found that the dominant peak frequency in a brain area decreases significantly along the posterior-anterior axis following the global hierarchy from early sensory to higher-order areas. This spatial gradient of peak frequency was significantly anticorrelated with that of cortical thickness, representing a proxy of the cortical hierarchical level. This result indicates that the dominant frequency changes systematically and globally along the spatial and hierarchical gradients and establishes a new structure-function relationship pertaining to brain oscillations as a core organization that may underlie hierarchical specialization in the brain

Data availability

We have used online dataset for this study.

The following previously published data sets were used

Article and author information

Author details

  1. Keyvan Mahjoory

    Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
    For correspondence
    kmahjoory@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0386-1135
  2. Jan-Mathijs Schoffelen

    Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Anne Keitel

    Psychology, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4498-0146
  4. Joachim Gross

    Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
    For correspondence
    joachim.gross@uni-muenster.de
    Competing interests
    The authors declare that no competing interests exist.

Funding

University of Muenster

  • Keyvan Mahjoory

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (864.14.011)

  • Jan-Mathijs Schoffelen

IZKF (Gro3/001/19)

  • Joachim Gross

Deutsche Forschungsgemeinschaft (GR 2024/5-1)

  • Joachim Gross

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Laura Dugué, Uni­ver­sité de Paris, France

Version history

  1. Received: November 18, 2019
  2. Accepted: August 20, 2020
  3. Accepted Manuscript published: August 21, 2020 (version 1)
  4. Version of Record published: September 7, 2020 (version 2)

Copyright

© 2020, Mahjoory et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,944
    views
  • 732
    downloads
  • 78
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Keyvan Mahjoory
  2. Jan-Mathijs Schoffelen
  3. Anne Keitel
  4. Joachim Gross
(2020)
The frequency gradient of human resting-state brain oscillations follows cortical hierarchies
eLife 9:e53715.
https://doi.org/10.7554/eLife.53715

Share this article

https://doi.org/10.7554/eLife.53715

Further reading

    1. Neuroscience
    Geoffroy Delamare, Yosif Zaki ... Claudia Clopath
    Short Report

    Representational drift refers to the dynamic nature of neural representations in the brain despite the behavior being seemingly stable. Although drift has been observed in many different brain regions, the mechanisms underlying it are not known. Since intrinsic neural excitability is suggested to play a key role in regulating memory allocation, fluctuations of excitability could bias the reactivation of previously stored memory ensembles and therefore act as a motor for drift. Here, we propose a rate-based plastic recurrent neural network with slow fluctuations of intrinsic excitability. We first show that subsequent reactivations of a neural ensemble can lead to drift of this ensemble. The model predicts that drift is induced by co-activation of previously active neurons along with neurons with high excitability which leads to remodeling of the recurrent weights. Consistent with previous experimental works, the drifting ensemble is informative about its temporal history. Crucially, we show that the gradual nature of the drift is necessary for decoding temporal information from the activity of the ensemble. Finally, we show that the memory is preserved and can be decoded by an output neuron having plastic synapses with the main region.

    1. Cell Biology
    2. Neuroscience
    Alexandra Stavsky, Leonardo A Parra-Rivas ... Daniel Gitler
    Short Report

    The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here, we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at synapses of cultured mouse hippocampal neurons. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.