The frequency gradient of human resting-state brain oscillations follows cortical hierarchies
Abstract
The human cortex is characterized by local morphological features such as cortical thickness, myelin content, and gene expression that change along the posterior-anterior axis. We investigated if some of these structural gradients are associated with a similar gradient in a prominent feature of brain activity - namely the frequency of oscillations. In resting-state MEG recordings from healthy participants (N=187) using mixed effect models, we found that the dominant peak frequency in a brain area decreases significantly along the posterior-anterior axis following the global hierarchy from early sensory to higher-order areas. This spatial gradient of peak frequency was significantly anticorrelated with that of cortical thickness, representing a proxy of the cortical hierarchical level. This result indicates that the dominant frequency changes systematically and globally along the spatial and hierarchical gradients and establishes a new structure-function relationship pertaining to brain oscillations as a core organization that may underlie hierarchical specialization in the brain
Data availability
We have used online dataset for this study.
Article and author information
Author details
Funding
University of Muenster
- Keyvan Mahjoory
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (864.14.011)
- Jan-Mathijs Schoffelen
IZKF (Gro3/001/19)
- Joachim Gross
Deutsche Forschungsgemeinschaft (GR 2024/5-1)
- Joachim Gross
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Mahjoory et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 6,800
- views
-
- 813
- downloads
-
- 109
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.