1. Developmental Biology
  2. Neuroscience
Download icon

Intermediate progenitors support migration of neural stem cells into dentate gyrus outer neurogenic niches

  1. Branden R Nelson  Is a corresponding author
  2. Rebecca D Hodge
  3. Ray AM Daza
  4. Prem Tripathi
  5. Sebastian J Arnold
  6. Kathleen J Millen
  7. Robert Hevner  Is a corresponding author
  1. Seattle Children's Research Institute, United States
  2. University of San Diego, United States
  3. University of Freiburg, Germany
Research Article
  • Cited 11
  • Views 2,337
  • Annotations
Cite this article as: eLife 2020;9:e53777 doi: 10.7554/eLife.53777

Abstract

The hippocampal dentate gyrus (DG) is a unique brain region maintaining neural stem cells (NCSs) and neurogenesis into adulthood. We used multiphoton imaging to visualize for genetically defined progenitor subpopulations in live slices across key stages of mouse DG development testing decades old static models of DG formation, with molecular identification, genetic-lineage tracing, and mutant analyses. We found novel progenitor migrations, timings, dynamic cell-cell interactions, signaling activities, and routes underlie mosaic DG formation. Intermediate progenitors (IPs, Tbr2+) pioneered migrations, supporting and guiding later emigrating NSCs (Sox9+) through multiple transient zones prior to converging at the nascent outer adult niche in a dynamic settling process, generating all prenatal and postnatal granule neurons in defined spatiotemporal order. IPs (Dll1+) extensively targeted contacts to mitotic NSCs (Notch active), revealing a substrate for cell-cell contact support during migrations, a developmental feature maintained in adults. Mouse DG formation shares conserved features of human neocortical expansion.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Branden R Nelson

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    For correspondence
    branden.nelson@seattlechildrens.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2941-0153
  2. Rebecca D Hodge

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ray AM Daza

    Department of Pathology, University of San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Prem Tripathi

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sebastian J Arnold

    Institute of Experimental and Clinical Pharmacology and Toxicology, Signaling Research Centers BIOSS and CIBSS, Faculty of Medicine, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Kathleen J Millen

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9978-675X
  7. Robert Hevner

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    For correspondence
    rhevner@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R21 MH087070)

  • Robert Hevner

National Institutes of Health (R21 MH087070)

  • Branden R Nelson

National Institutes of Health (R01 NS085081)

  • Robert Hevner

National Institutes of Health (R01 NS092339)

  • Robert Hevner

German Research Foundation Heisenberg-Program (AR 732/3-1)

  • Sebastian J Arnold

Germany's Excellence Strategy (CIBSS - EXC-2189 - Project ID 390939984)

  • Sebastian J Arnold

National Institutes of Health (R21 OD023838)

  • Branden R Nelson

National Institutes of Health (R21 OD023838)

  • Kathleen J Millen

National Institutes of Health (R01 NS099027)

  • Kathleen J Millen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#13535) of the Seattle Children's Research Institute.

Reviewing Editor

  1. Francois Guillemot, The Francis Crick Institute, United Kingdom

Publication history

  1. Received: November 20, 2019
  2. Accepted: March 30, 2020
  3. Accepted Manuscript published: April 2, 2020 (version 1)
  4. Accepted Manuscript updated: April 3, 2020 (version 2)
  5. Version of Record published: April 15, 2020 (version 3)

Copyright

© 2020, Nelson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,337
    Page views
  • 394
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Dongsheng Guo et al.
    Tools and Resources

    Skeletal muscle myoblasts (iMyoblasts) were generated from human induced pluripotent stem cells (iPSCs) using an efficient and reliable transgene-free induction and stem cell selection protocol. Immunofluorescence, flow cytometry, qPCR, digital RNA expression profiling, and scRNA-Seq studies identify iMyoblasts as a PAX3+/MYOD1+ skeletal myogenic lineage with a fetal-like transcriptome signature, distinct from adult muscle biopsy myoblasts (bMyoblasts) and iPSC-induced muscle progenitors. iMyoblasts can be stably propagated for >12 passages or 30 population doublings while retaining their dual commitment for myotube differentiation and regeneration of reserve cells. iMyoblasts also efficiently xenoengrafted into irradiated and injured mouse muscle where they undergo differentiation and fetal-adult MYH isoform switching, demonstrating their regulatory plasticity for adult muscle maturation in response to signals in the host muscle. Xenograft muscle retains PAX3+ muscle progenitors and can regenerate human muscle in response to secondary injury. As models of disease, iMyoblasts from individuals with Facioscapulohumeral Muscular Dystrophy revealed a previously unknown epigenetic regulatory mechanism controlling developmental expression of the pathological DUX4 gene. iMyoblasts from Limb-Girdle Muscular Dystrophy R7 and R9 and Walker Warburg Syndrome patients modeled their molecular disease pathologies and were responsive to small molecule and gene editing therapeutics. These findings establish the utility of iMyoblasts for ex vivo and in vivo investigations of human myogenesis and disease pathogenesis and for the development of muscle stem cell therapeutics.

    1. Cell Biology
    2. Developmental Biology
    Karl F Lechtreck et al.
    Research Article Updated

    Intraflagellar transport (IFT) carries proteins into flagella but how IFT trains interact with the large number of diverse proteins required to assemble flagella remains largely unknown. Here, we show that IFT of radial spokes in Chlamydomonas requires ARMC2/PF27, a conserved armadillo repeat protein associated with male infertility and reduced lung function. Chlamydomonas ARMC2 was highly enriched in growing flagella and tagged ARMC2 and the spoke protein RSP3 co-migrated on anterograde trains. In contrast, a cargo and an adapter of inner and outer dynein arms moved independently of ARMC2, indicating that unrelated cargoes distribute stochastically onto the IFT trains. After concomitant unloading at the flagellar tip, RSP3 attached to the axoneme whereas ARMC2 diffused back to the cell body. In armc2/pf27 mutants, IFT of radial spokes was abolished and the presence of radial spokes was limited to the proximal region of flagella. We conclude that ARMC2 is a cargo adapter required for IFT of radial spokes to ensure their assembly along flagella. ARMC2 belongs to a growing class of cargo-specific adapters that enable flagellar transport of preassembled axonemal substructures by IFT.