Shear stimulation of FOXC1 and FOXC2 differentially regulates cytoskeletal activity during lymphatic valve maturation

  1. Pieter R Norden
  2. Amélie Sabine
  3. Ying Wang
  4. Cansaran Saygili Demir
  5. Ting Liu
  6. Tatiana V Petrova
  7. Tsutomu Kume  Is a corresponding author
  1. Northwestern University, United States
  2. University of Lausanne, Switzerland
  3. Mayo Clinic, United States

Abstract

Mutations in the transcription factor FOXC2 are predominately associated with lymphedema. Herein, we demonstrate a key role for related factor FOXC1, in addition to FOXC2, in regulating cytoskeletal activity in lymphatic valves. FOXC1 is induced by laminar, but not oscillatory, shear and inducible, endothelial-specific deletion impaired postnatal lymphatic valve maturation in mice. However, deletion of Foxc2 induced valve degeneration, which is exacerbated in Foxc1; Foxc2 mutants. FOXC1 knockdown (KD) in human lymphatic endothelial cells increased focal adhesions and actin stress fibers whereas FOXC2-KD increased focal adherens and disrupted cell junctions, mediated by increased ROCK activation. ROCK inhibition rescued cytoskeletal or junctional integrity changes induced by inactivation of FOXC1 and FOXC2 in vitro and vivo respectively, but only ameliorated valve degeneration in Foxc2 mutants. These results identify both FOXC1 and FOXC2 as mediators of mechanotransduction in the postnatal lymphatic vasculature and posit cytoskeletal signaling as a therapeutic target in lymphatic pathologies.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Pieter R Norden

    Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Amélie Sabine

    Oncology, University of Lausanne, Epalinge, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7512-6703
  3. Ying Wang

    Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7852-386X
  4. Cansaran Saygili Demir

    Oncology, University of Lausanne, Epalinges, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Ting Liu

    Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tatiana V Petrova

    Oncology, University of Lausanne, Epalinges, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Tsutomu Kume

    Medicine, Northwestern University, Chicago, United States
    For correspondence
    t-kume@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6005-5316

Funding

National Institutes of Health (R01HL126920,R01HL144129)

  • Tsutomu Kume

National Institutes of Health (5T32HL094293)

  • Pieter R Norden

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures and animal studies were approved by Northwestern University's institutional animal care and use committee (IACUC) (Protocol: IS00008794) or by the Animal Ethics Committee of Vaud, Switzerland.

Reviewing Editor

  1. Natasha L Harvey, University of South Australia, Australia

Publication history

  1. Received: November 21, 2019
  2. Accepted: June 6, 2020
  3. Accepted Manuscript published: June 8, 2020 (version 1)
  4. Version of Record published: June 18, 2020 (version 2)

Copyright

© 2020, Norden et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,113
    Page views
  • 227
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pieter R Norden
  2. Amélie Sabine
  3. Ying Wang
  4. Cansaran Saygili Demir
  5. Ting Liu
  6. Tatiana V Petrova
  7. Tsutomu Kume
(2020)
Shear stimulation of FOXC1 and FOXC2 differentially regulates cytoskeletal activity during lymphatic valve maturation
eLife 9:e53814.
https://doi.org/10.7554/eLife.53814

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Morgan L Pimm et al.
    Research Article Updated

    Profilin-1 (PFN1) is a cytoskeletal protein that regulates the dynamics of actin and microtubule assembly. Thus, PFN1 is essential for the normal division, motility, and morphology of cells. Unfortunately, conventional fusion and direct labeling strategies compromise different facets of PFN1 function. As a consequence, the only methods used to determine known PFN1 functions have been indirect and often deduced in cell-free biochemical assays. We engineered and characterized two genetically encoded versions of tagged PFN1 that behave identical to each other and the tag-free protein. In biochemical assays purified proteins bind to phosphoinositide lipids, catalyze nucleotide exchange on actin monomers, stimulate formin-mediated actin filament assembly, and bound tubulin dimers (kD = 1.89 µM) to impact microtubule dynamics. In PFN1-deficient mammalian cells, Halo-PFN1 or mApple-PFN1 (mAp-PEN1) restored morphological and cytoskeletal functions. Titrations of self-labeling Halo-ligands were used to visualize molecules of PFN1. This approach combined with specific function-disrupting point-mutants (Y6D and R88E) revealed PFN1 bound to microtubules in live cells. Cells expressing the ALS-associated G118V disease variant did not associate with actin filaments or microtubules. Thus, these tagged PFN1s are reliable tools for studying the dynamic interactions of PFN1 with actin or microtubules in vitro as well as in important cell processes or disease-states.

    1. Cell Biology
    Lu Zhu et al.
    Research Article

    Nedd4/Rsp5 family E3 ligases mediate numerous cellular processes, many of which require the E3 ligase to interact with PY-motif containing adaptor proteins. Several Arrestin-Related Trafficking adaptors (ARTs) of Rsp5 were self-ubiquitinated for activation, but the regulation mechanism remains elusive. Remarkably, we demonstrate that Art1, Art4, and Art5 undergo K63 linked di-Ubiquitination by Rsp5. This modification enhances the PM recruitment of Rsp5 by Art1 or Art5 upon substrate induction, required for cargo protein ubiquitination. In agreement with these observations, we find that di-ubiquitin strengthens the interaction between the Pombe orthologs of Rsp5 and Art1, Pub1 and Any1. Further, we discover that the HECT domain exosite protects the K63 linked di-Ubiquitin on the adaptors from cleavage by the deubiquitination enzyme Ubp2. Together, our study uncovers a novel ubiquitination modification implemented by Rsp5 adaptor proteins, underscoring the regulatory mechanism of how adaptor proteins control the recruitment and activity of Rsp5 for the turnover of membrane proteins.