Wings and halteres act as coupled dual-oscillators in flies

  1. Tanvi Deora
  2. Siddharth S Sane
  3. Sanjay P Sane  Is a corresponding author
  1. Tata Institute of Fundamental Research, India
  2. Azim Premji University, India

Abstract

The mechanics of Dipteran thorax is dictated by a network of exoskeletal linkages which, when deformed by the flight muscles, generate coordinated wing movements. In Diptera, the forewings power flight, whereas the hindwings have evolved into specialized structures called halteres which provide rapid mechanosensory feedback for flight stabilization. Although actuated by independent muscles, wing and haltere motion is precisely phase-coordinated at high frequencies. Because wingbeat frequency is a product of wing-thorax resonance, any wear-and-tear of wings or thorax should impair flight ability. How robust is the Dipteran flight system against such perturbations? Here, we show that wings and halteres are independently-driven, coupled oscillators. We systematically reduced the wing length in flies and observed how wing-haltere synchronization was affected. The wing-wing system is a strongly-coupled oscillator, whereas the wing-haltere system is weakly-coupled through mechanical linkages which synchronize phase and frequency. Wing-haltere link acts in a unidirectional manner; altering wingbeat frequency affects haltere frequency, but not vice-versa. Exoskeletal linkages are thus key morphological features of the Dipteran thorax which ensure wing-haltere synchrony, despite severe wing damage.

Data availability

All data will be uploaded on Dryad

The following data sets were generated

Article and author information

Author details

  1. Tanvi Deora

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Siddharth S Sane

    Azim Premji University, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Sanjay P Sane

    Neurobiology, Tata Institute of Fundamental Research, Bangalore, India
    For correspondence
    sane@ncbs.res.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8274-1181

Funding

Air Force Office of Scientific Research (FA2386-11-1-4057 and FA9550-16-1-0155)

  • Sanjay P Sane

Human Frontier Science Program

  • Tanvi Deora

National Centre for Biological Sciences

  • Sanjay P Sane

Ramanujan Fellowship, Department of Science and Technology, Government of India

  • Sanjay P Sane

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Deora et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,656
    views
  • 206
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tanvi Deora
  2. Siddharth S Sane
  3. Sanjay P Sane
(2021)
Wings and halteres act as coupled dual-oscillators in flies
eLife 10:e53824.
https://doi.org/10.7554/eLife.53824

Share this article

https://doi.org/10.7554/eLife.53824

Further reading

    1. Evolutionary Biology
    Matthew Osmond, Graham Coop
    Research Article Updated

    Spatial patterns in genetic diversity are shaped by individuals dispersing from their parents and larger-scale population movements. It has long been appreciated that these patterns of movement shape the underlying genealogies along the genome leading to geographic patterns of isolation-by-distance in contemporary population genetic data. However, extracting the enormous amount of information contained in genealogies along recombining sequences has, until recently, not been computationally feasible. Here, we capitalize on important recent advances in genome-wide gene-genealogy reconstruction and develop methods to use thousands of trees to estimate per-generation dispersal rates and to locate the genetic ancestors of a sample back through time. We take a likelihood approach in continuous space using a simple approximate model (branching Brownian motion) as our prior distribution of spatial genealogies. After testing our method with simulations we apply it to Arabidopsis thaliana. We estimate a dispersal rate of roughly 60 km2/generation, slightly higher across latitude than across longitude, potentially reflecting a northward post-glacial expansion. Locating ancestors allows us to visualize major geographic movements, alternative geographic histories, and admixture. Our method highlights the huge amount of information about past dispersal events and population movements contained in genome-wide genealogies.

    1. Evolutionary Biology
    Dario Galanti, Jun Hee Jung ... Oliver Bossdorf
    Research Article

    Understanding the genomic basis of natural variation in plant pest resistance is an important goal in plant science, but it usually requires large and labor-intensive phenotyping experiments. Here, we explored the possibility that non-target reads from plant DNA sequencing can serve as phenotyping proxies for addressing such questions. We used data from a whole-genome and -epigenome sequencing study of 207 natural lines of field pennycress (Thlaspi arvense) that were grown in a common environment and spontaneously colonized by aphids, mildew, and other microbes. We found that the numbers of non-target reads assigned to the pest species differed between populations, had significant SNP-based heritability, and were associated with climate of origin and baseline glucosinolate contents. Specifically, pennycress lines from cold and thermally fluctuating habitats, presumably less favorable to aphids, showed higher aphid DNA load, i.e., decreased aphid resistance. Genome-wide association analyses identified genetic variants at known defense genes but also novel genomic regions associated with variation in aphid and mildew DNA load. Moreover, we found several differentially methylated regions associated with pathogen loads, in particular differential methylation at transposons and hypomethylation in the promoter of a gene involved in stomatal closure, likely induced by pathogens. Our study provides first insights into the defense mechanisms of Thlaspi arvense, a rising crop and model species, and demonstrates that non-target whole-genome sequencing reads, usually discarded, can be leveraged to estimate intensities of plant biotic interactions. With rapidly increasing numbers of large sequencing datasets worldwide, this approach should have broad application in fundamental and applied research.