Wings and halteres act as coupled dual-oscillators in flies

  1. Tanvi Deora
  2. Siddharth S Sane
  3. Sanjay P Sane  Is a corresponding author
  1. Tata Institute of Fundamental Research, India
  2. Azim Premji University, India


The mechanics of Dipteran thorax is dictated by a network of exoskeletal linkages which, when deformed by the flight muscles, generate coordinated wing movements. In Diptera, the forewings power flight, whereas the hindwings have evolved into specialized structures called halteres which provide rapid mechanosensory feedback for flight stabilization. Although actuated by independent muscles, wing and haltere motion is precisely phase-coordinated at high frequencies. Because wingbeat frequency is a product of wing-thorax resonance, any wear-and-tear of wings or thorax should impair flight ability. How robust is the Dipteran flight system against such perturbations? Here, we show that wings and halteres are independently-driven, coupled oscillators. We systematically reduced the wing length in flies and observed how wing-haltere synchronization was affected. The wing-wing system is a strongly-coupled oscillator, whereas the wing-haltere system is weakly-coupled through mechanical linkages which synchronize phase and frequency. Wing-haltere link acts in a unidirectional manner; altering wingbeat frequency affects haltere frequency, but not vice-versa. Exoskeletal linkages are thus key morphological features of the Dipteran thorax which ensure wing-haltere synchrony, despite severe wing damage.

Data availability

All data will be uploaded on Dryad

The following data sets were generated

Article and author information

Author details

  1. Tanvi Deora

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Siddharth S Sane

    Azim Premji University, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Sanjay P Sane

    Neurobiology, Tata Institute of Fundamental Research, Bangalore, India
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8274-1181


Air Force Office of Scientific Research (FA2386-11-1-4057 and FA9550-16-1-0155)

  • Sanjay P Sane

Human Frontier Science Program

  • Tanvi Deora

National Centre for Biological Sciences

  • Sanjay P Sane

Ramanujan Fellowship, Department of Science and Technology, Government of India

  • Sanjay P Sane

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gordon J Berman, Emory University, United States

Version history

  1. Received: March 8, 2020
  2. Accepted: November 10, 2021
  3. Accepted Manuscript published: November 16, 2021 (version 1)
  4. Version of Record published: November 26, 2021 (version 2)


© 2021, Deora et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 1,558
  • 195
  • 10

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tanvi Deora
  2. Siddharth S Sane
  3. Sanjay P Sane
Wings and halteres act as coupled dual-oscillators in flies
eLife 10:e53824.

Share this article

Further reading

    1. Evolutionary Biology
    Isabella Tomanek

    Laboratory experiments on a fluorescent protein in E. coli reveal how duplicate genes are rapidly inactivated by mutations during evolution.

    1. Evolutionary Biology
    Maryline Blin, Louis Valay ... Sylvie Rétaux
    Research Article

    Animals are adapted to their natural habitats and lifestyles. Their brains perceive the external world via their sensory systems, compute information together with that of internal states and autonomous activity, and generate appropriate behavioral outputs. However, how do these processes evolve across evolution? Here, focusing on the sense of olfaction, we have studied the evolution in olfactory sensitivity, preferences, and behavioral responses to six different food-related amino acid odors in the two eco-morphs of the fish Astyanax mexicanus. To this end, we have developed a high-throughput behavioral setup and pipeline of quantitative and qualitative behavior analysis, and we have tested 489 six-week-old Astyanax larvae. The blind, dark-adapted morphs of the species showed markedly distinct basal swimming patterns and behavioral responses to odors, higher olfactory sensitivity, and a strong preference for alanine, as compared to their river-dwelling eyed conspecifics. In addition, we discovered that fish have an individual ‘swimming personality’, and that this personality influences their capability to respond efficiently to odors and find the source. Importantly, the personality traits that favored significant responses to odors were different in surface fish and cavefish. Moreover, the responses displayed by second-generation cave × surface F2 hybrids suggested that olfactory-driven behavior and olfactory sensitivity is a quantitative genetic trait. Our findings show that olfactory processing has rapidly evolved in cavefish at several levels: detection threshold, odor preference, and foraging behavior strategy. Cavefish is therefore an outstanding model to understand the genetic, molecular, and neurophysiological basis of sensory specialization in response to environmental change.