RNA-guided retargeting of Sleeping Beauty transposition in human cells

  1. Adrian Kovač
  2. Csaba Miskey
  3. Michael Menzel
  4. Esther Grueso
  5. Andreas Gogol-Döring
  6. Zoltan Ivics  Is a corresponding author
  1. Paul Ehrlich Institute, Germany
  2. University of Applied Sciences, Germany

Abstract

An ideal tool for gene therapy would enable efficient gene integration at predetermined sites in the human genome. Here we demonstrate biased genome-wide integration of the Sleeping Beauty (SB) transposon by combining it with components of the CRISPR/Cas9 system. We provide proof-of-concept that it is possible to influence the target site selection of SB by fusing it to a catalytically inactive Cas9 (dCas9) and by providing a single guide RNA (sgRNA) against the human Alu retrotransposon. Enrichment of transposon integrations was dependent on the sgRNA, and occurred in an asymmetric pattern with a bias towards sites in a relatively narrow, 300-bp window downstream of the sgRNA targets. Our data indicate that the targeting mechanism specified by CRISPR/Cas9 forces integration into genomic regions that are otherwise poor targets for SB transposition. Future modifications of this technology may allow the development of methods for specific gene insertion for precision genetic engineering.

Data availability

DNA sequence data generated and analysed during this study are included in the manuscript and Source Data Files 1-4.

Article and author information

Author details

  1. Adrian Kovač

    Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
    Competing interests
    No competing interests declared.
  2. Csaba Miskey

    Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
    Competing interests
    No competing interests declared.
  3. Michael Menzel

    Bioinformatics, University of Applied Sciences, Giessen, Germany
    Competing interests
    No competing interests declared.
  4. Esther Grueso

    Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
    Competing interests
    No competing interests declared.
  5. Andreas Gogol-Döring

    Bioinformatics, University of Applied Sciences, Giessen, Germany
    Competing interests
    No competing interests declared.
  6. Zoltan Ivics

    Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
    For correspondence
    zoltan.ivics@pei.de
    Competing interests
    Zoltan Ivics, Patent applications around targeted transposon integration technology(Patent Nos. EP1594971B1, EP1594972B1 and EP1594973B1)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7803-6658

Funding

No external funding was received for this work.

Copyright

© 2020, Kovač et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,380
    views
  • 1,140
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adrian Kovač
  2. Csaba Miskey
  3. Michael Menzel
  4. Esther Grueso
  5. Andreas Gogol-Döring
  6. Zoltan Ivics
(2020)
RNA-guided retargeting of Sleeping Beauty transposition in human cells
eLife 9:e53868.
https://doi.org/10.7554/eLife.53868

Share this article

https://doi.org/10.7554/eLife.53868

Further reading

    1. Biochemistry and Chemical Biology
    Parnian Arafi, Sujan Devkota ... Michael S Wolfe
    Research Article

    Missense mutations in the amyloid precursor protein (APP) and presenilin-1 (PSEN1) cause early-onset familial Alzheimer’s disease (FAD) and alter proteolytic production of secreted 38-to-43-residue amyloid β-peptides (Aβ) by the PSEN1-containing γ-secretase complex, ostensibly supporting the amyloid hypothesis of pathogenesis. However, proteolysis of APP substrate by γ-secretase is processive, involving initial endoproteolysis to produce long Aβ peptides of 48 or 49 residues followed by carboxypeptidase trimming in mostly tripeptide increments. We recently reported evidence that FAD mutations in APP and PSEN1 cause deficiencies in early steps in processive proteolysis of APP substrate C99 and that this results from stalled γ-secretase enzyme-substrate and/or enzyme-intermediate complexes. These stalled complexes triggered synaptic degeneration in a Caenorhabditis elegans model of FAD independently of Aβ production. Here, we conducted full quantitative analysis of all proteolytic events on APP substrate by γ-secretase with six additional PSEN1 FAD mutations and found that all six are deficient in multiple processing steps. However, only one of these (F386S) was deficient in certain trimming steps but not in endoproteolysis. Fluorescence lifetime imaging microscopy in intact cells revealed that all six PSEN1 FAD mutations lead to stalled γ-secretase enzyme-substrate/intermediate complexes. The F386S mutation, however, does so only in Aβ-rich regions of the cells, not in C99-rich regions, consistent with the deficiencies of this mutant enzyme only in trimming of Aβ intermediates. These findings provide further evidence that FAD mutations lead to stalled and stabilized γ-secretase enzyme-substrate and/or enzyme-intermediate complexes and are consistent with the stalled process rather than the products of γ-secretase proteolysis as the pathogenic trigger.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Kira A Cozzolino, Lynn Sanford ... Dylan J Taatjes
    Research Article

    Hyperactive interferon (IFN) signaling is a hallmark of Down syndrome (DS), a condition caused by Trisomy 21 (T21); strategies that normalize IFN signaling could benefit this population. Mediator-associated kinases CDK8 and CDK19 drive inflammatory responses through incompletely understood mechanisms. Using sibling-matched cell lines with/without T21, we investigated Mediator kinase function in the context of hyperactive IFN in DS over a 75 min to 24 hr timeframe. Activation of IFN-response genes was suppressed in cells treated with the CDK8/CDK19 inhibitor cortistatin A (CA), via rapid suppression of IFN-responsive transcription factor (TF) activity. We also discovered that CDK8/CDK19 affect splicing, a novel means by which Mediator kinases control gene expression. To further probe Mediator kinase function, we completed cytokine screens and metabolomics experiments. Cytokines are master regulators of inflammatory responses; by screening 105 different cytokine proteins, we show that Mediator kinases help drive IFN-dependent cytokine responses at least in part through transcriptional regulation of cytokine genes and receptors. Metabolomics revealed that Mediator kinase inhibition altered core metabolic pathways in cell type-specific ways, and broad upregulation of anti-inflammatory lipid mediators occurred specifically in kinase-inhibited cells during hyperactive IFNγ signaling. A subset of these lipids (e.g. oleamide, desmosterol) serve as ligands for nuclear receptors PPAR and LXR, and activation of these receptors occurred specifically during hyperactive IFN signaling in CA-treated cells, revealing mechanistic links between Mediator kinases, lipid metabolism, and nuclear receptor function. Collectively, our results establish CDK8/CDK19 as context-specific metabolic regulators, and reveal that these kinases control gene expression not only via TFs, but also through metabolic changes and splicing. Moreover, we establish that Mediator kinase inhibition antagonizes IFN signaling through transcriptional, metabolic, and cytokine responses, with implications for DS and other chronic inflammatory conditions.