The E2 Marie Kondo and the CTLH E3 ligase clear deposited RNA binding proteins during the maternal-to-zygotic transition

  1. Michael Zavortink
  2. Lauren N Rutt
  3. Svetlana Dzitoyeva
  4. Jesslyn C Henriksen
  5. Chloe Barrington
  6. Danielle Y Bilodeau
  7. Miranda Wang
  8. Lily Xiao Xiao Chen
  9. Olivia S Rissland  Is a corresponding author
  1. University of Colorado School of Medicine, United States
  2. The Hospital for Sick Children, Canada

Abstract

The maternal-to-zygotic transition (MZT) is a conserved step in animal development, where control is passed from the maternal to the zygotic genome. Although the MZT is typically considered from its impact on the transcriptome, we previously found that three maternally deposited Drosophila RNA binding proteins (ME31B, Trailer Hitch [TRAL], and Cup) are also cleared during the MZT by unknown mechanisms. Here, we show that these proteins are degraded by the ubiquitin-proteasome system. Marie Kondo, an E2 conjugating enzyme, and the E3 CTLH ligase are required for the destruction of ME31B, TRAL, and Cup. Structure modeling of the Drosophila CTLH complex suggests that substrate recognition is different than orthologous complexes. Despite occurring hours earlier, egg activation mediates clearance of these proteins through the Pan Gu kinase, which stimulates translation of Kondo mRNA. Clearance of the maternal protein dowry thus appears to be a coordinated, but as-yet underappreciated, aspect of the MZT.

Data availability

Sequencing data have been deposited in GEO under accession code GSE140436. All data generated during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2 and 4.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Michael Zavortink

    Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lauren N Rutt

    Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Svetlana Dzitoyeva

    Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jesslyn C Henriksen

    Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Chloe Barrington

    Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Danielle Y Bilodeau

    Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8086-4233
  7. Miranda Wang

    Molecular Medicine Program, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Lily Xiao Xiao Chen

    Molecular Medicine Program, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Olivia S Rissland

    Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, United States
    For correspondence
    olivia.rissland@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2619-6019

Funding

National Institute of General Medical Sciences (R35GM128680)

  • Olivia S Rissland

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Zavortink et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,628
    views
  • 748
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael Zavortink
  2. Lauren N Rutt
  3. Svetlana Dzitoyeva
  4. Jesslyn C Henriksen
  5. Chloe Barrington
  6. Danielle Y Bilodeau
  7. Miranda Wang
  8. Lily Xiao Xiao Chen
  9. Olivia S Rissland
(2020)
The E2 Marie Kondo and the CTLH E3 ligase clear deposited RNA binding proteins during the maternal-to-zygotic transition
eLife 9:e53889.
https://doi.org/10.7554/eLife.53889

Share this article

https://doi.org/10.7554/eLife.53889

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ananda Kishore Mukherjee, Subhajit Dutta ... Shantanu Chowdhury
    Research Article

    Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.