TMEM95 is a sperm membrane protein essential for mammalian fertilization
Abstract
The fusion of gamete membranes during fertilization is an essential process for sexual reproduction. Despite its importance, only three proteins are known to be indispensable for sperm-egg membrane fusion: the sperm proteins IZUMO1 and SPACA6, and the egg protein JUNO. Here we demonstrate that another sperm protein, TMEM95, is necessary for sperm-egg interaction. TMEM95 ablation in mice caused complete male-specific infertility. Sperm lacking this protein were morphologically normal exhibited normal motility, and could penetrate the zona pellucida and bind to the oolemma. However, once bound to the oolemma, TMEM95-deficient sperm were unable to fuse with the egg membrane or penetrate into the ooplasm, and fertilization could only be achieved by mechanical injection of one sperm into the ooplasm, thereby bypassing membrane fusion. These data demonstrate that TMEM95 is essential for mammalian fertilization.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files.
Article and author information
Author details
Funding
Ministerio de Economía y Competitividad (RYC-2012-10193)
- Pablo Bermejo-Álvarez
Ministerio de Economía y Competitividad (FPI fellowship)
- Ismael Lamas-Toranzo
Ministerio de Economía y Competitividad (Ramón y Cajal contract)
- Serafín Pérez-Cerezales
European Union Seventh Framework Programme (Marie Curie fellowship)
- Beatriz Fernández-Fuertes
Medical Research Council (MR/M012468/1)
- Enrica Bianchi
- Gavin J Wright
Ministerio de Economía y Competitividad (AGL2014-58739-R)
- Pablo Bermejo-Álvarez
Ministerio de Economía y Competitividad (AGL2017-84908-R)
- Pablo Bermejo-Álvarez
Ministerio de Economía y Competitividad (AGL2015-70159-P)
- María Jiménez-Movilla
Ministerio de Economía y Competitividad (RTI2018-093548-B-I00)
- Alfonso Gutiérrez-Adán
Ministerio de Economía y Competitividad (AGL2016-71890-REDT)
- Alfonso Gutiérrez-Adán
- María Jiménez-Movilla
- Pablo Bermejo-Álvarez
H2020 European Research Council (StG 757886-ELONGAN)
- Pablo Bermejo-Álvarez
Fundación Séneca-Agencia de Ciencia y Tecnología de Murcia (20887/PI/18)
- María Jiménez-Movilla
Department of Agriculture, Food and the Marine (11/S/104)
- Pat Lonergan
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All experimental procedures were approved by INIA Animal Care Committee and Madrid Region Authorities (PROEX 040/17) in agreement with European legislation.
Copyright
© 2020, Lamas-Toranzo et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,188
- views
-
- 680
- downloads
-
- 83
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Platelet-derived growth factor receptor alpha (PDGFR-α) activity is crucial in the process of dental and periodontal mesenchyme regeneration facilitated by autologous platelet concentrates (APCs), such as platelet-rich fibrin (PRF), platelet-rich plasma (PRP) and concentrated growth factors (CGF), as well as by recombinant PDGF drugs. However, it is largely unclear about the physiological patterns and cellular fate determinations of PDGFR-α+ cells in the homeostasis maintaining of adult dental and periodontal mesenchyme. We previously identified NFATc1 expressing PDGFR-α+ cells as a subtype of skeletal stem cells (SSCs) in limb bone in mice, but their roles in dental and periodontal remain unexplored. To this end, in the present study we investigated the spatiotemporal atlas of NFATc1+ and PDGFR-α+ cells residing in dental and periodontal mesenchyme in mice, their capacity for progeny cell generation, and their inclusive, exclusive and hierarchical relations in homeostasis. We utilized CRISPR/Cas9-mediated gene editing to generate two dual recombination systems, which were Cre-loxP and Dre-rox combined intersectional and exclusive reporters respectively, to concurrently demonstrate the inclusive, exclusive, and hierarchical distributions of NFATc1+ and PDGFR-α+ cells and their lineage commitment. By employing the state-of-the-art transgenic lineage tracing techniques in cooperating with tissue clearing-based advanced imaging and three-dimensional slices reconstruction, we systematically mapped the distribution atlas of NFATc1+ and PDGFR-α+ cells in dental and periodontal mesenchyme and tracked their in vivo fate trajectories in mice. Our findings extend current understanding of NFATc1+ and PDGFR-α+ cells in dental and periodontal mesenchyme homeostasis, and furthermore enhance our comprehension of their sustained therapeutic impact for future clinical investigations.
-
- Cancer Biology
- Cell Biology
Bestrophin isoform 4 (BEST4) is a newly identified subtype of the calcium-activated chloride channel family. Analysis of colonic epithelial cell diversity by single-cell RNA-sequencing has revealed the existence of a cluster of BEST4+ mature colonocytes in humans. However, if the role of BEST4 is involved in regulating tumour progression remains largely unknown. In this study, we demonstrate that BEST4 overexpression attenuates cell proliferation, colony formation, and mobility in colorectal cancer (CRC) in vitro, and impedes the tumour growth and the liver metastasis in vivo. BEST4 is co-expressed with hairy/enhancer of split 4 (HES4) in the nucleus of cells, and HES4 signals BEST4 by interacting with the upstream region of the BEST4 promoter. BEST4 is epistatic to HES4 and downregulates TWIST1, thereby inhibiting epithelial-to-mesenchymal transition (EMT) in CRC. Conversely, knockout of BEST4 using CRISPR/Cas9 in CRC cells revitalises tumour growth and induces EMT. Furthermore, the low level of the BEST4 mRNA is correlated with advanced and the worse prognosis, suggesting its potential role involving CRC progression.