TMEM95 is a sperm membrane protein essential for mammalian fertilization

  1. Ismael Lamas-Toranzo
  2. Julieta G Hamze
  3. Enrica Bianchi
  4. Beatriz Fernández-Fuertes
  5. Serafín Pérez-Cerezales
  6. Ricardo Laguna-Barraza
  7. Raúl Fernández-González
  8. Pat Lonergan
  9. Alfonso Gutiérrez-Adán
  10. Gavin J Wright
  11. María Jiménez-Movilla  Is a corresponding author
  12. Pablo Bermejo-Álvarez  Is a corresponding author
  1. INIA, Spain
  2. University of Murcia, Spain
  3. Wellcome Trust Sanger Institute, United Kingdom
  4. University of Girona, Spain
  5. University College Dublin, Ireland

Abstract

The fusion of gamete membranes during fertilization is an essential process for sexual reproduction. Despite its importance, only three proteins are known to be indispensable for sperm-egg membrane fusion: the sperm proteins IZUMO1 and SPACA6, and the egg protein JUNO. Here we demonstrate that another sperm protein, TMEM95, is necessary for sperm-egg interaction. TMEM95 ablation in mice caused complete male-specific infertility. Sperm lacking this protein were morphologically normal exhibited normal motility, and could penetrate the zona pellucida and bind to the oolemma. However, once bound to the oolemma, TMEM95-deficient sperm were unable to fuse with the egg membrane or penetrate into the ooplasm, and fertilization could only be achieved by mechanical injection of one sperm into the ooplasm, thereby bypassing membrane fusion. These data demonstrate that TMEM95 is essential for mammalian fertilization.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Ismael Lamas-Toranzo

    Animal Reproduction, INIA, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7790-2649
  2. Julieta G Hamze

    Department of Cell Biology and Histology, University of Murcia, Murcia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Enrica Bianchi

    Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Beatriz Fernández-Fuertes

    Department of Biology, University of Girona, Girona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Serafín Pérez-Cerezales

    Animal Reproduction, INIA, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Ricardo Laguna-Barraza

    Animal Reproduction, INIA, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Raúl Fernández-González

    Animal Reproduction, INIA, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Pat Lonergan

    School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  9. Alfonso Gutiérrez-Adán

    Animal Reproduction, INIA, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Gavin J Wright

    Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0537-0863
  11. María Jiménez-Movilla

    Department of Cell Biology and Histology, University of Murcia, Murcia, Spain
    For correspondence
    mariajm@um.es
    Competing interests
    The authors declare that no competing interests exist.
  12. Pablo Bermejo-Álvarez

    Animal Reproduction, INIA, Madrid, Spain
    For correspondence
    bermejo.pablo@inia.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9907-2626

Funding

Ministerio de Economía y Competitividad (RYC-2012-10193)

  • Pablo Bermejo-Álvarez

Ministerio de Economía y Competitividad (FPI fellowship)

  • Ismael Lamas-Toranzo

Ministerio de Economía y Competitividad (Ramón y Cajal contract)

  • Serafín Pérez-Cerezales

European Union Seventh Framework Programme (Marie Curie fellowship)

  • Beatriz Fernández-Fuertes

Medical Research Council (MR/M012468/1)

  • Enrica Bianchi
  • Gavin J Wright

Ministerio de Economía y Competitividad (AGL2014-58739-R)

  • Pablo Bermejo-Álvarez

Ministerio de Economía y Competitividad (AGL2017-84908-R)

  • Pablo Bermejo-Álvarez

Ministerio de Economía y Competitividad (AGL2015-70159-P)

  • María Jiménez-Movilla

Ministerio de Economía y Competitividad (RTI2018-093548-B-I00)

  • Alfonso Gutiérrez-Adán

Ministerio de Economía y Competitividad (AGL2016-71890-REDT)

  • Alfonso Gutiérrez-Adán
  • María Jiménez-Movilla
  • Pablo Bermejo-Álvarez

H2020 European Research Council (StG 757886-ELONGAN)

  • Pablo Bermejo-Álvarez

Fundación Séneca-Agencia de Ciencia y Tecnología de Murcia (20887/PI/18)

  • María Jiménez-Movilla

Department of Agriculture, Food and the Marine (11/S/104)

  • Pat Lonergan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were approved by INIA Animal Care Committee and Madrid Region Authorities (PROEX 040/17) in agreement with European legislation.

Copyright

© 2020, Lamas-Toranzo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,276
    views
  • 690
    downloads
  • 93
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ismael Lamas-Toranzo
  2. Julieta G Hamze
  3. Enrica Bianchi
  4. Beatriz Fernández-Fuertes
  5. Serafín Pérez-Cerezales
  6. Ricardo Laguna-Barraza
  7. Raúl Fernández-González
  8. Pat Lonergan
  9. Alfonso Gutiérrez-Adán
  10. Gavin J Wright
  11. María Jiménez-Movilla
  12. Pablo Bermejo-Álvarez
(2020)
TMEM95 is a sperm membrane protein essential for mammalian fertilization
eLife 9:e53913.
https://doi.org/10.7554/eLife.53913

Share this article

https://doi.org/10.7554/eLife.53913

Further reading

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.