Loss of centromere function drives karyotype evolution in closely related Malassezia species
Abstract
Genomic rearrangements associated with speciation often result in chromosome number variation among closely related species. Malassezia species show variable karyotypes ranging between 6 and 9 chromosomes. Here, we experimentally identified all 8 centromeres in M. sympodialis as 3 to 5 kb long kinetochore-bound regions spanning an AT-rich core and depleted of the canonical histone H3. Centromeres of similar sequence features were identified as CENP-A-rich regions in Malassezia furfur with 7 chromosomes, and histone H3 depleted regions in Malassezia slooffiae and Malassezia globosa with 9 chromosomes each. Analysis of synteny conservation across centromeres with newly generated chromosome-level genome assemblies suggests two distinct mechanisms of chromosome number reduction from an inferred 9-chromosome ancestral state: (a) chromosome breakage followed by loss of centromere DNA and (b) centromere inactivation accompanied by changes in DNA sequence following chromosome-chromosome fusion. We propose AT-rich centromeres drive karyotype diversity in the Malassezia species complex through breakage and inactivation.
Data availability
The Mtw1 ChIP sequencing reads reported in this paper have been deposited under NCBI BioProject (Accession number PRJNA509412). The genome sequence assemblies of M. globosa, M. slooffiae, and M. furfur have been deposited in GenBank with accession numbers SAMN10720087, SAMN10720088, and SAMN13341476 respectively.
-
Genome assembly of Malassezia slooffiaeGenBank, SAMN10720088.
-
Genome assembly of Malassezia globosaGenBank, SAMN10720087.
-
Genome assembly of Malassezia furfurGenBank, SAMN13341476.
-
Malassezia restricta CBS 7877 genome, complete sequenceNCBI BioSample, SAMN09377640.
-
Genome sequencing of Malassezia nana JCM 12085NCBI BioProject, PRJDB3735.
-
Genome sequencing of Malassezia dermatis JCM 11348NCBI BioProject, PRJDB3732.
-
Genome sequencing of Malassezia japonica JCM 11963NCBI BioProject, PRJDB3733.
Article and author information
Author details
Funding
Tata Innovation Fellowship (BT/HRT/35/01/03/2017)
- Kaustuv Sanyal
Department of Biotechnology , Ministry of Science and Technology (BT/INF/22/SP27679/2018)
- Kaustuv Sanyal
National Institutes of Health (R37 award-AI39115-21; R01 award-AI50113-15)
- Joseph Heitman
Agency for Science, Technology and Research (H18/01a0/016)
- Thomas L Dawson
Jawaharlal Nehru Centre for Advanced Scientific Research (Graduate student fellowship)
- Sundar Ram Sankaranarayanan
Science and Engineering Research Board (PDF/2016/002858)
- Md Hashim Reza
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Wolf-Dietrich Heyer, University of California, Davis, United States
Publication history
- Received: November 26, 2019
- Accepted: January 20, 2020
- Accepted Manuscript published: January 20, 2020 (version 1)
- Version of Record published: February 17, 2020 (version 2)
Copyright
© 2020, Sankaranarayanan et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,926
- Page views
-
- 420
- Downloads
-
- 21
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Epidemiology and Global Health
- Genetics and Genomics
Background: To evaluate the utility of polygenic risk scores (PRS) in identifying high-risk individuals, different publicly available PRS for breast (n=85), prostate (n=37), colorectal (n=22) and lung cancers (n=11) were examined in a prospective study of 21,694 Chinese adults.
Methods: We constructed PRS using weights curated in the online PGS Catalog. PRS performance was evaluated by distribution, discrimination, predictive ability, and calibration. Hazard ratios (HR) and corresponding confidence intervals [CI] of the common cancers after 20 years of follow-up were estimated using Cox proportional hazard models for different levels of PRS.
Results: A total of 495 breast, 308 prostate, 332 female-colorectal, 409 male-colorectal, 181 female-lung and 381 male-lung incident cancers were identified. The area under receiver operating characteristic curve for the best performing site-specific PRS were 0.61 (PGS000873, breast), 0.70 (PGS00662, prostate), 0.65 (PGS000055, female-colorectal), 0.60 (PGS000734, male-colorectal) and 0.56 (PGS000721, female-lung), and 0.58 (PGS000070, male-lung), respectively. Compared to the middle quintile, individuals in the highest cancer-specific PRS quintile were 64% more likely to develop cancers of the breast, prostate, and colorectal. For lung cancer, the lowest cancer-specific PRS quintile was associated with 28-34% decreased risk compared to the middle quintile. In contrast, the hazard ratios observed for quintiles 4 (female-lung: 0.95 [0.61-1.47]; male-lung: 1.14 [0.82-1.57]) and 5 (female-lung: 0.95 [0.61-1.47]) were not significantly different from that for the middle quintile.
Conclusions: Site-specific PRSs can stratify the risk of developing breast, prostate, and colorectal cancers in this East Asian population. Appropriate correction factors may be required to improve calibration.
Funding This work is supported by the National Research Foundation Singapore (NRF-NRFF2017-02), PRECISION Health Research, Singapore (PRECISE) and the Agency for Science, Technology and Research (A*STAR). WP Koh was supported by National Medical Research Council, Singapore (NMRC/CSA/0055/2013). CC Khor was supported by National Research Foundation Singapore (NRF-NRFI2018-01). Rajkumar Dorajoo received a grant from the Agency for Science, Technology and Research Career Development Award (A*STAR CDA - 202D8090), and from Ministry of Health Healthy Longevity Catalyst Award (HLCA20Jan-0022). The Singapore Chinese Health Study was supported by grants from the National Medical Research Council, Singapore (NMRC/CIRG/1456/2016) and the U.S. National Institutes of Health [NIH] (R01 CA144034 and UM1 CA182876).
-
- Developmental Biology
- Genetics and Genomics
The development of tools to manipulate the mouse genome, including knockout and transgenic technology, has revolutionized our ability to explore gene function in mammals. Moreover, for genes that are expressed in multiple tissues or at multiple stages of development, the use of tissue-specific expression of the Cre recombinase allows gene function to be perturbed in specific cell types and/or at specific times. However, it is well known that putative tissue-specific promoters often drive unanticipated 'off target' expression. In our efforts to explore the biology of the male reproductive tract, we unexpectedly found that expression of Cre in the central nervous system resulted in recombination in the epididymis, a tissue where sperm mature for ~1-2 weeks following the completion of testicular development. Remarkably, we not only observed reporter expression in the epididymis when Cre expression was driven from neuron-specific transgenes, but also when Cre expression in the brain was induced from an AAV vector carrying a Cre expression construct. A surprisingly wide range of Cre drivers - including six different neuronal promoters as well as the adipose-specific Adipoq Cre promoter - exhibited off target recombination in the epididymis, with a subset of drivers also exhibiting unexpected activity in other tissues such as the reproductive accessory glands. Using a combination of parabiosis and serum transfer experiments, we find evidence supporting the hypothesis that Cre may be trafficked from its cell of origin to the epididymis through the circulatory system. Together, our findings should motivate extreme caution when interpreting conditional alleles, and suggest the exciting possibility of inter-tissue RNA or protein trafficking in modulation of reproductive biology.