Stimulation strength controls the rate of initiation but not the molecular organization of TCR-induced signalling

  1. Claire Y Ma
  2. John C Marioni  Is a corresponding author
  3. Gillian M Griffiths  Is a corresponding author
  4. Arianne C Richard  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. Wellcome Trust Sanger Institute, United Kingdom

Abstract

Millions of naïve T cells with different TCRs may interact with a peptide-MHC ligand, but very few will activate. Remarkably, this fine control is orchestrated using a limited set of intracellular machinery. It remains unclear whether changes in stimulation strength alter the programme of signalling events leading to T cell activation. Using mass cytometry to simultaneously measure multiple signalling pathways during activation of murine CD8+ T cells, we found a programme of distal signalling events that is shared, regardless of the strength of TCR stimulation. Moreover, the relationship between transcription of early response genes Nr4a1 and Irf8 and activation of the ribosomal protein S6 is also conserved across stimuli. Instead, we found that stimulation strength dictates the rate with which cells initiate signalling through this network. These data suggest that TCR-induced signalling results in a coordinated activation program, modulated in rate but not organization by stimulation strength.

Data availability

Raw mass cytometry data can be found on the Flow Repository, accession numbers FR-FCM-Z2CX and FR-FCM-Z2CP.Full results of mass cytometry analyses are included as Supplementary File 5.Source data for summary plots of flow cytometry-measured signaling markers in T cells stimulated with peptide-loaded BMDCs (Figure 7a) are included as Figure 7 - Source Data File 1.Analysis code is available athttps://github.com/MarioniLab/SignallingMassCytoStimStrength

Article and author information

Author details

  1. Claire Y Ma

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4244-7535
  2. John C Marioni

    Wellcome Trust Sanger Institute, Hinxton, United Kingdom
    For correspondence
    marioni@ebi.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9092-0852
  3. Gillian M Griffiths

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    gg305@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0434-5842
  4. Arianne C Richard

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    acr62@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wellcome (103930,100140,217100)

  • Gillian M Griffiths

Wellcome (204017/Z/16/Z)

  • Claire Y Ma

Cancer Research UK (A17197)

  • John C Marioni

Medical Research Council (MR/P014178/1)

  • Arianne C Richard

Addenbrooke's Charitable Trust, Cambridge University Hospitals (23/17 A (ii))

  • Claire Y Ma

European Molecular Biology Organization

  • John C Marioni

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation: Experiments were carried out under Project Licence PPL 70/8590. This research has been regulated under the Animals (Scientific Procedures) Act 1986 Amendment Regulations 2012 following ethical review by the University of Cambridge Animal Welfare and Ethical Review Body (AWERB).

Reviewing Editor

  1. Michael L Dustin, University of Oxford, United Kingdom

Version history

  1. Received: November 25, 2019
  2. Accepted: May 14, 2020
  3. Accepted Manuscript published: May 15, 2020 (version 1)
  4. Version of Record published: June 22, 2020 (version 2)

Copyright

© 2020, Ma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,671
    Page views
  • 623
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Claire Y Ma
  2. John C Marioni
  3. Gillian M Griffiths
  4. Arianne C Richard
(2020)
Stimulation strength controls the rate of initiation but not the molecular organization of TCR-induced signalling
eLife 9:e53948.
https://doi.org/10.7554/eLife.53948

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Megan E Kelley, Adi Y Berman ... Gregory P Way
    Research Article

    Drug resistance is a challenge in anticancer therapy. In many cases, cancers can be resistant to the drug prior to exposure, i.e., possess intrinsic drug resistance. However, we lack target-independent methods to anticipate resistance in cancer cell lines or characterize intrinsic drug resistance without a priori knowledge of its cause. We hypothesized that cell morphology could provide an unbiased readout of drug resistance. To test this hypothesis, we used HCT116 cells, a mismatch repair-deficient cancer cell line, to isolate clones that were resistant or sensitive to bortezomib, a well-characterized proteasome inhibitor and anticancer drug to which many cancer cells possess intrinsic resistance. We then expanded these clones and measured high-dimensional single-cell morphology profiles using Cell Painting, a high-content microscopy assay. Our imaging- and computation-based profiling pipeline identified morphological features that differed between resistant and sensitive cells. We used these features to generate a morphological signature of bortezomib resistance. We then employed this morphological signature to analyze a set of HCT116 clones (five resistant and five sensitive) that had not been included in the signature training dataset, and correctly predicted sensitivity to bortezomib in seven cases, in the absence of drug treatment. This signature predicted bortezomib resistance better than resistance to other drugs targeting the ubiquitin-proteasome system. Our results establish a proof-of-concept framework for the unbiased analysis of drug resistance using high-content microscopy of cancer cells, in the absence of drug treatment.

    1. Computational and Systems Biology
    Barbara Bravi, Andrea Di Gioacchino ... Rémi Monasson
    Research Article Updated

    Antigen immunogenicity and the specificity of binding of T-cell receptors to antigens are key properties underlying effective immune responses. Here we propose diffRBM, an approach based on transfer learning and Restricted Boltzmann Machines, to build sequence-based predictive models of these properties. DiffRBM is designed to learn the distinctive patterns in amino-acid composition that, on the one hand, underlie the antigen’s probability of triggering a response, and on the other hand the T-cell receptor’s ability to bind to a given antigen. We show that the patterns learnt by diffRBM allow us to predict putative contact sites of the antigen-receptor complex. We also discriminate immunogenic and non-immunogenic antigens, antigen-specific and generic receptors, reaching performances that compare favorably to existing sequence-based predictors of antigen immunogenicity and T-cell receptor specificity.