AANAT1 functions in astrocytes to regulate sleep homeostasis

  1. Sejal Davla
  2. Gregory Artiushin
  3. Yongjun Li
  4. Daryan Chitsaz
  5. Sally Li
  6. Amita Sehgal
  7. Donald J van Meyel  Is a corresponding author
  1. McGill University, Canada
  2. University of Pennsylvania, United States
  3. Howard Hughes Medical Institute, University of Pennsylvania, United States

Abstract

How the brain controls the need and acquisition of recovery sleep after prolonged wakefulness is an important issue in sleep research. The monoamines serotonin and dopamine are key regulators of sleep in mammals and in Drosophila. We found that the enzyme arylalkylamine N-acetyltransferase 1 (AANAT1) is expressed by Drosophila astrocytes and specific subsets of neurons in the adult brain. AANAT1 acetylates monoamines and inactivates them, and we found that AANAT1 limited the accumulation of serotonin and dopamine in the brain upon sleep deprivation. Loss of AANAT1 from astrocytes, but not from neurons, caused flies to increase their daytime recovery sleep following overnight sleep deprivation. Together, these findings demonstrate a crucial role for AANAT1 and astrocytes in the regulation of monoamine bioavailability and homeostatic sleep.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Sejal Davla

    Centre for Research In Neuroscience, Dept. of Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    No competing interests declared.
  2. Gregory Artiushin

    Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  3. Yongjun Li

    Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  4. Daryan Chitsaz

    Centre for Research In Neuroscience, Dept. of Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    No competing interests declared.
  5. Sally Li

    Centre for Research In Neuroscience, Dept. of Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    No competing interests declared.
  6. Amita Sehgal

    Neuroscience, Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, United States
    Competing interests
    Amita Sehgal, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7149-8588
  7. Donald J van Meyel

    Centre for Research In Neuroscience, Dept. of Neurology and Neurosurgery, McGill University, Montreal, Canada
    For correspondence
    don.vanmeyel@mcgill.ca
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6075-8599

Funding

Natural Sciences and Engineering Research Council of Canada (RGPIN-2017-05142)

  • Donald J van Meyel

Canadian Institutes of Health Research (MOP-137034)

  • Donald J van Meyel

National Institutes of Health (DK120757)

  • Amita Sehgal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Davla et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,238
    views
  • 434
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sejal Davla
  2. Gregory Artiushin
  3. Yongjun Li
  4. Daryan Chitsaz
  5. Sally Li
  6. Amita Sehgal
  7. Donald J van Meyel
(2020)
AANAT1 functions in astrocytes to regulate sleep homeostasis
eLife 9:e53994.
https://doi.org/10.7554/eLife.53994

Share this article

https://doi.org/10.7554/eLife.53994

Further reading

    1. Cell Biology
    2. Neuroscience
    Luting Yang, Chunqing Hu ... Yaping Yan
    Research Article

    Reactive astrocytes play critical roles in the occurrence of various neurological diseases such as multiple sclerosis. Activation of astrocytes is often accompanied by a glycolysis-dominant metabolic switch. However, the role and molecular mechanism of metabolic reprogramming in activation of astrocytes have not been clarified. Here, we found that PKM2, a rate-limiting enzyme of glycolysis, displayed nuclear translocation in astrocytes of EAE (experimental autoimmune encephalomyelitis) mice, an animal model of multiple sclerosis. Prevention of PKM2 nuclear import by DASA-58 significantly reduced the activation of mice primary astrocytes, which was observed by decreased proliferation, glycolysis and secretion of inflammatory cytokines. Most importantly, we identified the ubiquitination-mediated regulation of PKM2 nuclear import by ubiquitin ligase TRIM21. TRIM21 interacted with PKM2, promoted its nuclear translocation and stimulated its nuclear activity to phosphorylate STAT3, NF-κB and interact with c-myc. Further single-cell RNA sequencing and immunofluorescence staining demonstrated that TRIM21 expression was upregulated in astrocytes of EAE. TRIM21 overexpressing in mice primary astrocytes enhanced PKM2-dependent glycolysis and proliferation, which could be reversed by DASA-58. Moreover, intracerebroventricular injection of a lentiviral vector to knockdown TRIM21 in astrocytes or intraperitoneal injection of TEPP-46, which inhibit the nuclear translocation of PKM2, effectively decreased disease severity, CNS inflammation and demyelination in EAE. Collectively, our study provides novel insights into the pathological function of nuclear glycolytic enzyme PKM2 and ubiquitination-mediated regulatory mechanism that are involved in astrocyte activation. Targeting this axis may be a potential therapeutic strategy for the treatment of astrocyte-involved neurological disease.

    1. Neuroscience
    Felix Michaud, Ruggiero Francavilla ... Lisa Topolnik
    Research Article

    Alzheimer’s disease (AD) leads to progressive memory decline, and alterations in hippocampal function are among the earliest pathological features observed in human and animal studies. GABAergic interneurons (INs) within the hippocampus coordinate network activity, among which type 3 interneuron-specific (I-S3) cells expressing vasoactive intestinal polypeptide and calretinin play a crucial role. These cells provide primarily disinhibition to principal excitatory cells (PCs) in the hippocampal CA1 region, regulating incoming inputs and memory formation. However, it remains unclear whether AD pathology induces changes in the activity of I-S3 cells, impacting the hippocampal network motifs. Here, using young adult 3xTg-AD mice, we found that while the density and morphology of I-S3 cells remain unaffected, there were significant changes in their firing output. Specifically, I-S3 cells displayed elongated action potentials and decreased firing rates, which was associated with a reduced inhibition of CA1 INs and their higher recruitment during spatial decision-making and object exploration tasks. Furthermore, the activation of CA1 PCs was also impacted, signifying early disruptions in CA1 network functionality. These findings suggest that altered firing patterns of I-S3 cells might initiate early-stage dysfunction in hippocampal CA1 circuits, potentially influencing the progression of AD pathology.