AANAT1 functions in astrocytes to regulate sleep homeostasis

  1. Sejal Davla
  2. Gregory Artiushin
  3. Yongjun Li
  4. Daryan Chitsaz
  5. Sally Li
  6. Amita Sehgal
  7. Donald J van Meyel  Is a corresponding author
  1. McGill University, Canada
  2. University of Pennsylvania, United States
  3. Howard Hughes Medical Institute, University of Pennsylvania, United States

Abstract

How the brain controls the need and acquisition of recovery sleep after prolonged wakefulness is an important issue in sleep research. The monoamines serotonin and dopamine are key regulators of sleep in mammals and in Drosophila. We found that the enzyme arylalkylamine N-acetyltransferase 1 (AANAT1) is expressed by Drosophila astrocytes and specific subsets of neurons in the adult brain. AANAT1 acetylates monoamines and inactivates them, and we found that AANAT1 limited the accumulation of serotonin and dopamine in the brain upon sleep deprivation. Loss of AANAT1 from astrocytes, but not from neurons, caused flies to increase their daytime recovery sleep following overnight sleep deprivation. Together, these findings demonstrate a crucial role for AANAT1 and astrocytes in the regulation of monoamine bioavailability and homeostatic sleep.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Sejal Davla

    Centre for Research In Neuroscience, Dept. of Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    No competing interests declared.
  2. Gregory Artiushin

    Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  3. Yongjun Li

    Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  4. Daryan Chitsaz

    Centre for Research In Neuroscience, Dept. of Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    No competing interests declared.
  5. Sally Li

    Centre for Research In Neuroscience, Dept. of Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    No competing interests declared.
  6. Amita Sehgal

    Neuroscience, Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, United States
    Competing interests
    Amita Sehgal, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7149-8588
  7. Donald J van Meyel

    Centre for Research In Neuroscience, Dept. of Neurology and Neurosurgery, McGill University, Montreal, Canada
    For correspondence
    don.vanmeyel@mcgill.ca
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6075-8599

Funding

Natural Sciences and Engineering Research Council of Canada (RGPIN-2017-05142)

  • Donald J van Meyel

Canadian Institutes of Health Research (MOP-137034)

  • Donald J van Meyel

National Institutes of Health (DK120757)

  • Amita Sehgal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Davla et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,303
    views
  • 439
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sejal Davla
  2. Gregory Artiushin
  3. Yongjun Li
  4. Daryan Chitsaz
  5. Sally Li
  6. Amita Sehgal
  7. Donald J van Meyel
(2020)
AANAT1 functions in astrocytes to regulate sleep homeostasis
eLife 9:e53994.
https://doi.org/10.7554/eLife.53994

Share this article

https://doi.org/10.7554/eLife.53994

Further reading

    1. Neuroscience
    Eleni Hackwell, Sharon R Ladyman ... David R Grattan
    Research Article

    The specific role that prolactin plays in lactational infertility, as distinct from other suckling or metabolic cues, remains unresolved. Here, deletion of the prolactin receptor (Prlr) from forebrain neurons or arcuate kisspeptin neurons resulted in failure to maintain normal lactation-induced suppression of estrous cycles. Kisspeptin immunoreactivity and pulsatile LH secretion were increased in these mice, even in the presence of ongoing suckling stimulation and lactation. GCaMP fibre photometry of arcuate kisspeptin neurons revealed that the normal episodic activity of these neurons is rapidly suppressed in pregnancy and this was maintained throughout early lactation. Deletion of Prlr from arcuate kisspeptin neurons resulted in early reactivation of episodic activity of kisspeptin neurons prior to a premature return of reproductive cycles in early lactation. These observations show dynamic variation in arcuate kisspeptin neuronal activity associated with the hormonal changes of pregnancy and lactation, and provide direct evidence that prolactin action on arcuate kisspeptin neurons is necessary for suppressing fertility during lactation in mice.

    1. Neuroscience
    Vincent Huson, Wade G Regehr
    Research Article

    Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings. We find that MFs evoke a continuum of responses in the UBC population, mediated by three different types of glutamate receptors that each convey a specialized component. AMPARs transmit timing information for single stimuli at up to 5 spikes/s, and for very brief bursts. A combination of mGluR2/3s (inhibitory) and mGluR1s (excitatory) mediates a continuum of delayed, and broadened responses to longer bursts, and to sustained high frequency activation. Variability in the mGluR2/3 component controls the time course of the onset of firing, and variability in the mGluR1 component controls the duration of prolonged firing. We conclude that the combination of glutamate receptor types allows each UBC to simultaneously convey different aspects of MF firing. These findings establish that UBCs are highly flexible circuit elements that provide diverse temporal transformations that are well suited to contribute to specialized processing in different regions of the cerebellar cortex.