Attention-related modulation of caudate neurons depends on superior colliculus activity

  1. James P Herman  Is a corresponding author
  2. Fabrice Arcizet
  3. Richard J Krauzlis
  1. National Eye Institute, United States
  2. Institut de la Vision, France

Abstract

Recent work has implicated the primate basal ganglia in visual perception and attention, in addition to their traditional role in motor control. The basal ganglia, especially the caudate nucleus 'head' (CDh) of the striatum, receive indirect anatomical connections from the superior colliculus, a midbrain structure that is known to play a crucial role in the control of visual attention. To test the possible functional relationship between these subcortical structures, we recorded CDh neuronal activity of macaque monkeys before and during unilateral superior colliculus (SC) inactivation in a spatial attention task. SC inactivation significantly altered the attention-related modulation of CDh neurons and strongly impaired the classification of task epochs based on CDh activity. Only inactivation of SC on the same side of the brain as recorded CDh neurons, not the opposite side, had these effects. These results demonstrate a novel interaction between SC activity and attention-related visual processing in the basal ganglia.

Data availability

Data for the main figures are available via Dryad (doi:10.5061/dryad.xd2547dcx).

The following data sets were generated

Article and author information

Author details

  1. James P Herman

    Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, United States
    For correspondence
    james.herman@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6916-2807
  2. Fabrice Arcizet

    Visual information processing, Institut de la Vision, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Richard J Krauzlis

    Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Eye Institute (1ZIAEY000511)

  • Richard J Krauzlis

European Research Council SYNERGY Grant scheme (610110)

  • Fabrice Arcizet

RHU LIGHT4DEAF (ANR-15-RHU-0001)

  • Fabrice Arcizet

LABEX LIFESENSES (ANR-10-LABX-65)

  • Fabrice Arcizet

IHU FOReSIGHT (ANR-15-RHU-0001)

  • Fabrice Arcizet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental protocols (#NEI-649) were approved by the National Eye Institute Animal Care and Use Committee, and all procedures were performed in accordance with the United States Public Health Service policy on the humane care and use of laboratory animals.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,682
    views
  • 281
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James P Herman
  2. Fabrice Arcizet
  3. Richard J Krauzlis
(2020)
Attention-related modulation of caudate neurons depends on superior colliculus activity
eLife 9:e53998.
https://doi.org/10.7554/eLife.53998

Share this article

https://doi.org/10.7554/eLife.53998

Further reading

    1. Neuroscience
    Mina Mišić, Noah Lee ... Herta Flor
    Research Article

    Chronic back pain (CBP) is a global health concern with significant societal and economic burden. While various predictors of back pain chronicity have been proposed, including demographic and psychosocial factors, neuroimaging studies have pointed to brain characteristics as predictors of CBP. However, large-scale, multisite validation of these predictors is currently lacking. In two independent longitudinal studies, we examined white matter diffusion imaging data and pain characteristics in patients with subacute back pain (SBP) over 6- and 12-month periods. Diffusion data from individuals with CBP and healthy controls (HC) were analyzed for comparison. Whole-brain tract-based spatial statistics analyses revealed that a cluster in the right superior longitudinal fasciculus (SLF) tract had larger fractional anisotropy (FA) values in patients who recovered (SBPr) compared to those with persistent pain (SBPp), and predicted changes in pain severity. The SLF FA values accurately classified patients at baseline and follow-up in a third publicly available dataset (Area under the Receiver Operating Curve ~0.70). Notably, patients who recovered had FA values larger than those of HC suggesting a potential role of SLF integrity in resilience to CBP. Structural connectivity-based models also classified SBPp and SBPr patients from the three data sets (validation accuracy 67%). Our results validate the right SLF as a robust predictor of CBP development, with potential for clinical translation. Cognitive and behavioral processes dependent on the right SLF, such as proprioception and visuospatial attention, should be analyzed in subacute stages as they could prove important for back pain chronicity.

    1. Neuroscience
    Lina María Jaime Tobón, Tobias Moser
    Research Article

    Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca2+ channels. The postsynaptic SGNs differ in their spontaneous firing rates, sound thresholds, and operating ranges. While a causal relationship between synaptic heterogeneity and neural response diversity seems likely, experimental evidence linking synaptic and SGN physiology has remained difficult to obtain. Here, we aimed at bridging this gap by ex vivo paired recordings of murine IHCs and postsynaptic SGN boutons with stimuli and conditions aimed to mimic those of in vivo SGN characterization. Synapses with high spontaneous rate of release (SR) were found predominantly on the pillar side of the IHC. These high SR synapses had larger and more temporally compact spontaneous EPSCs, lower voltage thresholds, tighter coupling of Ca2+ channels and vesicular release sites, shorter response latencies, and higher initial release rates. This study indicates that synaptic heterogeneity in IHCs directly contributes to the diversity of spontaneous and sound-evoked firing of SGNs.