Intracellular calcium leak lowers glucose storage in human muscle, promoting hyperglycemia and diabetes

  1. Eshwar R Tammineni
  2. Natalia Kraeva
  3. Lourdes Figueroa
  4. Carlo Manno
  5. Carlos A Ibarra
  6. Amira Klip
  7. Sheila Riazi
  8. Eduardo Rios  Is a corresponding author
  1. Rush University, United States
  2. University of Toronto, Canada
  3. Toronto General Hospital, Canada
  4. The Hospital for Sick Children, Canada

Abstract

Most glucose is processed in muscle, for energy or glycogen stores. Malignant Hyperthermia Susceptibility (MHS) exemplifies muscle conditions that increase [Ca2+]cytosol. 42% of MHS patients have hyperglycemia. We show that phosphorylated glycogen phosphorylase (GPa), glycogen synthase (GSa) – respectively activated and inactivated by phosphorylation – and their Ca2+-dependent kinase (PhK), are elevated in microsomal extracts from MHS patients' muscle. Glycogen and glucose transporter GLUT4 are decreased. [Ca2+]cytosol, increased to MHS levels, promoted GP phosphorylation. Imaging at ~100 nm resolution located GPa at sarcoplasmic reticulum (SR) junctional cisternae, and apo-GP at Z disk. MHS muscle therefore has a wide-ranging alteration in glucose metabolism: high [Ca2+]cytosol activates PhK, which inhibits GS, activates GP and moves it toward the SR, favoring glycogenolysis. The alterations probably cause these patients' hyperglycemia. For basic studies, MHS emerges as a variable stressor, which forces glucose pathways from the normal to the diseased range, thereby exposing novel metabolic links.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures and tables in a multi-sheet Excel file

Article and author information

Author details

  1. Eshwar R Tammineni

    Physiology and Biophysics, Rush University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Natalia Kraeva

    Anaesthesia and Pain Management, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Lourdes Figueroa

    Physiology and Biophysics, Rush University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Carlo Manno

    Physiology and Biophysics, Rush University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Carlos A Ibarra

    Anaesthesia and Pain Management, Toronto General Hospital, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8898-6772
  6. Amira Klip

    Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7906-0302
  7. Sheila Riazi

    Anaesthesia and Pain Management, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Eduardo Rios

    Physiology and Biophysics, Rush University, Chicago, United States
    For correspondence
    erios@rush.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0985-8997

Funding

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR071381)

  • Sheila Riazi
  • Eduardo Rios

National Institute of Advanced Industrial Science and Technology (R01AR072602)

  • Eduardo Rios

National Institute of General Medical Sciences (R01GM111254)

  • Eduardo Rios

National Center for Research Resources

  • Eduardo Rios

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of Rush University (# 17-035, 16-091 and 18-065). All surgery was carried out on animals previously euthanized by methods approved under said protocols. Every effort was made to minimize stress and suffering.

Human subjects: Following approval by the institutional Research Ethics Board of Toronto General Hospital (TGH), informed consents were obtained from all patients who underwent the CHCT. The consent, also approved by the Institutional Review Board of Rush University, included use of biopsies for functional studies, imaging and cell culture.

Copyright

© 2020, Tammineni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,885
    views
  • 294
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eshwar R Tammineni
  2. Natalia Kraeva
  3. Lourdes Figueroa
  4. Carlo Manno
  5. Carlos A Ibarra
  6. Amira Klip
  7. Sheila Riazi
  8. Eduardo Rios
(2020)
Intracellular calcium leak lowers glucose storage in human muscle, promoting hyperglycemia and diabetes
eLife 9:e53999.
https://doi.org/10.7554/eLife.53999

Share this article

https://doi.org/10.7554/eLife.53999

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Paissoni, Sarita Puri ... Carlo Camilloni
    Research Article

    Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.

    1. Structural Biology and Molecular Biophysics
    Kingsley Y Wu, Ta I Hung, Chia-en A Chang
    Research Article

    PROteolysis TArgeting Chimeras (PROTACs) are small molecules that induce target protein degradation via the ubiquitin-proteasome system. PROTACs recruit the target protein and E3 ligase; a critical first step is forming a ternary complex. However, while the formation of a ternary complex is crucial, it may not always guarantee successful protein degradation. The dynamics of the PROTAC-induced degradation complex play a key role in ubiquitination and subsequent degradation. In this study, we computationally modelled protein complex structures and dynamics associated with a series of PROTACs featuring different linkers to investigate why these PROTACs, all of which formed ternary complexes with Cereblon (CRBN) E3 ligase and the target protein bromodomain-containing protein 4 (BRD4BD1), exhibited varying degrees of degradation potency. We constructed the degradation machinery complexes with Culling-Ring Ligase 4A (CRL4A) E3 ligase scaffolds. Through atomistic molecular dynamics simulations, we illustrated how PROTAC-dependent protein dynamics facilitating the arrangement of surface lysine residues of BRD4BD1 into the catalytic pocket of E2/ubiquitin cascade for ubiquitination. Despite featuring identical warheads in this PROTAC series, the linkers were found to affect the residue-interaction networks, and thus governing the essential motions of the entire degradation machine for ubiquitination. These findings offer a structural dynamic perspective on ligand-induced protein degradation, providing insights to guide future PROTAC design endeavors.