1. Computational and Systems Biology
Download icon

A decentralised neural model explaining optimal integration of navigational strategies in insects

  1. Xuelong Sun  Is a corresponding author
  2. Shigang Yue  Is a corresponding author
  3. Michael Mangan  Is a corresponding author
  1. University of Lincoln, United Kingdom
  2. University of Sheffield, United Kingdom
Research Article
  • Cited 6
  • Views 1,144
  • Annotations
Cite this article as: eLife 2020;9:e54026 doi: 10.7554/eLife.54026


Insect navigation arises from the coordinated action of concurrent guidance systems but the neural mechanisms through which each functions, and are then coordinated, remains unknown. We propose that insects require distinct strategies to retrace familiar routes (route-following) and directly return from novel to familiar terrain (homing) using different aspects of frequency encoded views that are processed in different neural pathways. We also demonstrate how the Central Complex and Mushroom Bodies regions of the insect brain may work in tandem to coordinate the directional output of different guidance cues through a contextually switched ring-attractor inspired by neural recordings. The resultant unified model of insect navigation reproduces behavioural data from a series of cue conflict experiments in realistic animal environments and offers testable hypotheses of where and how insects process visual cues, utilise the different information that they provide and coordinate their outputs to achieve the adaptive behaviours observed in the wild.

Data availability

All the source code of the implementation and part of the data are uploaded to Github and are available via https://github.com/XuelongSun/InsectNavigationToolkitModelling

Article and author information

Author details

  1. Xuelong Sun

    Computational Intelligent Lab, School of Computer Science, University of Lincoln, Lincoln, United Kingdom
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9035-5523
  2. Shigang Yue

    Computational Intelligent Lab, School of Computer Science, University of Lincoln, Lincoln, United Kingdom
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Mangan

    Sheffield Robotics, Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.


Horizon 2020 Framework Programme (ULTRACEPT 778062)

  • Xuelong Sun
  • Shigang Yue

Horizon 2020 Framework Programme (STEP2DYNA 691154)

  • Xuelong Sun
  • Shigang Yue

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Publication history

  1. Received: November 28, 2019
  2. Accepted: June 26, 2020
  3. Accepted Manuscript published: June 26, 2020 (version 1)
  4. Version of Record published: July 16, 2020 (version 2)


© 2020, Sun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 1,144
    Page views
  • 188
  • 6

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Muhammad Arif et al.
    Research Article

    Myocardial infarction (MI) promotes a range of systemic effects, many of which are unknown. Here, we investigated the alterations associated with MI progression in heart and other metabolically active tissues (liver, skeletal muscle, and adipose) in a mouse model of MI (induced by ligating the left ascending coronary artery) and sham-operated mice. We performed a genome-wide transcriptomic analysis on tissue samples obtained 6- and 24-hours post MI or sham operation. By generating tissue-specific biological networks, we observed: (1) dysregulation in multiple biological processes (including immune system, mitochondrial dysfunction, fatty-acid beta-oxidation, and RNA and protein processing) across multiple tissues post MI; and (2) tissue-specific dysregulation in biological processes in liver and heart post MI. Finally, we validated our findings in two independent MI cohorts. Overall, our integrative analysis highlighted both common and specific biological responses to MI across a range of metabolically active tissues.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Stephan Wilmes et al.
    Research Article Updated

    Cytokines elicit pleiotropic and non-redundant activities despite strong overlap in their usage of receptors, JAKs and STATs molecules. We use IL-6 and IL-27 to ask how two cytokines activating the same signaling pathway have different biological roles. We found that IL-27 induces more sustained STAT1 phosphorylation than IL-6, with the two cytokines inducing comparable levels of STAT3 phosphorylation. Mathematical and statistical modeling of IL-6 and IL-27 signaling identified STAT3 binding to GP130, and STAT1 binding to IL-27Rα, as the main dynamical processes contributing to sustained pSTAT1 levels by IL-27. Mutation of Tyr613 on IL-27Rα decreased IL-27-induced STAT1 phosphorylation by 80% but had limited effect on STAT3 phosphorgylation. Strong receptor/STAT coupling by IL-27 initiated a unique gene expression program, which required sustained STAT1 phosphorylation and IRF1 expression and was enriched in classical Interferon Stimulated Genes. Interestingly, the STAT/receptor coupling exhibited by IL-6/IL-27 was altered in patients with systemic lupus erythematosus (SLE). IL-6/IL-27 induced a more potent STAT1 activation in SLE patients than in healthy controls, which correlated with higher STAT1 expression in these patients. Partial inhibition of JAK activation by sub-saturating doses of Tofacitinib specifically lowered the levels of STAT1 activation by IL-6. Our data show that receptor and STATs concentrations critically contribute to shape cytokine responses and generate functional pleiotropy in health and disease.