Neural arbitration between social and individual learning systems

  1. Andreea Oliviana Diaconescu  Is a corresponding author
  2. Madeline Stecy
  3. Lars Kasper
  4. Christopher J Burke
  5. Zoltan Nagy
  6. Christoph Mathys
  7. Philippe N Tobler
  1. Centre for Addiction and Mental Health, University of Toronto, Canada
  2. Rutgers Robert Wood Johnson Medical School, United States
  3. Institute for Biomedical Engineering, Switzerland
  4. University of Zurich, Switzerland
  5. Scuola Internazionale Superiore di Studi Avanzati (SISSA), Italy

Abstract

Decision making requires integrating self-gathered information with advice from others. However, the arbitration process by which one source of information is selected over the other has not been fully elucidated. In this study, we formalised arbitration as the relative precision of predictions, afforded by each learning system, using hierarchical Bayesian modelling. In a probabilistic learning task, participants predicted the outcome of a lottery using recommendations from a more informed advisor and/or self-sampled outcomes. Decision confidence, as measured by the number of points participants wagered on their predictions, varied with our relative precision definition of arbitration. Functional neuroimaging demonstrated arbitration signals that were independent of decision confidence and involved modality-specific brain regions. Arbitrating in favour of self-gathered information activated the dorsolateral prefrontal cortex and the midbrain, whereas arbitrating in favour of social information engaged the ventromedial prefrontal cortex and the amygdala. These findings indicate that relative precision captures arbitration between social and individual learning systems at both behavioural and neural levels.

Data availability

Data generated during this study are available in Dryad under the doi:10.5061/dryad.wwpzgmsgs. Source data files have been provided for the main tables and figures. The routines for all analyses are available as Matlab code: https://github.com/andreeadiaconescu/arbitration. The instructions for running the code in order to reproduce the results can be found in the ReadMe file.

The following data sets were generated

Article and author information

Author details

  1. Andreea Oliviana Diaconescu

    Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
    For correspondence
    andreea.diaconescu@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3633-9757
  2. Madeline Stecy

    Medicine, Rutgers Robert Wood Johnson Medical School, New Jersey, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lars Kasper

    MR Technology Group & Translational Neuromodeling Unit, Institute for Biomedical Engineering, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7667-603X
  4. Christopher J Burke

    Laboratory for Social and Neural Systems Research, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Zoltan Nagy

    Laboratory for Social and Neural Systems Research, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Christoph Mathys

    Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Philippe N Tobler

    Department of Economics, Laboratory for Social and Neural Systems Research, University of Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.

Funding

Swiss National Foundation (PZ00P3_167952)

  • Andreea Oliviana Diaconescu

Swiss National Foundation (PP00P1_150739)

  • Philippe N Tobler

Swiss National Foundation (100014_165884)

  • Philippe N Tobler

Swiss National Foundation (100019_176016)

  • Philippe N Tobler

Krembil Foundation

  • Andreea Oliviana Diaconescu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Woo-Young Ahn, Seoul National University, Korea (South), Republic of

Ethics

Human subjects: Informed consent, and consent to publish, was obtained from all participants. The study was approved by the Ethics Committee of the Canton of Zürich (KEK-ZH 2010-0327). All participants gave written informed consent before taking part in the study.

Version history

  1. Received: November 28, 2019
  2. Accepted: August 10, 2020
  3. Accepted Manuscript published: August 11, 2020 (version 1)
  4. Version of Record published: September 7, 2020 (version 2)

Copyright

© 2020, Diaconescu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,998
    views
  • 281
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andreea Oliviana Diaconescu
  2. Madeline Stecy
  3. Lars Kasper
  4. Christopher J Burke
  5. Zoltan Nagy
  6. Christoph Mathys
  7. Philippe N Tobler
(2020)
Neural arbitration between social and individual learning systems
eLife 9:e54051.
https://doi.org/10.7554/eLife.54051

Share this article

https://doi.org/10.7554/eLife.54051

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.

    1. Computational and Systems Biology
    Qianmu Yuan, Chong Tian, Yuedong Yang
    Tools and Resources

    Revealing protein binding sites with other molecules, such as nucleic acids, peptides, or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the explosive growth of proteins in sequence databases, how to accurately and efficiently identify these binding sites from sequences becomes essential. However, current methods mostly rely on expensive multiple sequence alignments or experimental protein structures, limiting their genome-scale applications. Besides, these methods haven’t fully explored the geometry of the protein structures. Here, we propose GPSite, a multi-task network for simultaneously predicting binding residues of DNA, RNA, peptide, protein, ATP, HEM, and metal ions on proteins. GPSite was trained on informative sequence embeddings and predicted structures from protein language models, while comprehensively extracting residual and relational geometric contexts in an end-to-end manner. Experiments demonstrate that GPSite substantially surpasses state-of-the-art sequence-based and structure-based approaches on various benchmark datasets, even when the structures are not well-predicted. The low computational cost of GPSite enables rapid genome-scale binding residue annotations for over 568,000 sequences, providing opportunities to unveil unexplored associations of binding sites with molecular functions, biological processes, and genetic variants. The GPSite webserver and annotation database can be freely accessed at https://bio-web1.nscc-gz.cn/app/GPSite.