1. Computational and Systems Biology
Download icon

Neural arbitration between social and individual learning systems

  1. Andreea Oliviana Diaconescu  Is a corresponding author
  2. Madeline Stecy
  3. Lars Kasper
  4. Christopher J Burke
  5. Zoltan Nagy
  6. Christoph Mathys
  7. Philippe N Tobler
  1. Centre for Addiction and Mental Health, University of Toronto, Canada
  2. Rutgers Robert Wood Johnson Medical School, United States
  3. Institute for Biomedical Engineering, Switzerland
  4. University of Zurich, Switzerland
  5. Scuola Internazionale Superiore di Studi Avanzati (SISSA), Italy
Research Article
  • Cited 0
  • Views 1,236
  • Annotations
Cite this article as: eLife 2020;9:e54051 doi: 10.7554/eLife.54051

Abstract

Decision making requires integrating self-gathered information with advice from others. However, the arbitration process by which one source of information is selected over the other has not been fully elucidated. In this study, we formalised arbitration as the relative precision of predictions, afforded by each learning system, using hierarchical Bayesian modelling. In a probabilistic learning task, participants predicted the outcome of a lottery using recommendations from a more informed advisor and/or self-sampled outcomes. Decision confidence, as measured by the number of points participants wagered on their predictions, varied with our relative precision definition of arbitration. Functional neuroimaging demonstrated arbitration signals that were independent of decision confidence and involved modality-specific brain regions. Arbitrating in favour of self-gathered information activated the dorsolateral prefrontal cortex and the midbrain, whereas arbitrating in favour of social information engaged the ventromedial prefrontal cortex and the amygdala. These findings indicate that relative precision captures arbitration between social and individual learning systems at both behavioural and neural levels.

Data availability

Data generated during this study are available in Dryad under the doi:10.5061/dryad.wwpzgmsgs. Source data files have been provided for the main tables and figures. The routines for all analyses are available as Matlab code: https://github.com/andreeadiaconescu/arbitration. The instructions for running the code in order to reproduce the results can be found in the ReadMe file.

The following data sets were generated

Article and author information

Author details

  1. Andreea Oliviana Diaconescu

    Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
    For correspondence
    andreea.diaconescu@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3633-9757
  2. Madeline Stecy

    Medicine, Rutgers Robert Wood Johnson Medical School, New Jersey, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lars Kasper

    MR Technology Group & Translational Neuromodeling Unit, Institute for Biomedical Engineering, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7667-603X
  4. Christopher J Burke

    Laboratory for Social and Neural Systems Research, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Zoltan Nagy

    Laboratory for Social and Neural Systems Research, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Christoph Mathys

    Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Philippe N Tobler

    Department of Economics, Laboratory for Social and Neural Systems Research, University of Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.

Funding

Swiss National Foundation (PZ00P3_167952)

  • Andreea Oliviana Diaconescu

Swiss National Foundation (PP00P1_150739)

  • Philippe N Tobler

Swiss National Foundation (100014_165884)

  • Philippe N Tobler

Swiss National Foundation (100019_176016)

  • Philippe N Tobler

Krembil Foundation

  • Andreea Oliviana Diaconescu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent, and consent to publish, was obtained from all participants. The study was approved by the Ethics Committee of the Canton of Zürich (KEK-ZH 2010-0327). All participants gave written informed consent before taking part in the study.

Reviewing Editor

  1. Woo-Young Ahn, Seoul National University, Korea (South), Republic of

Publication history

  1. Received: November 28, 2019
  2. Accepted: August 10, 2020
  3. Accepted Manuscript published: August 11, 2020 (version 1)
  4. Version of Record published: September 7, 2020 (version 2)

Copyright

© 2020, Diaconescu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,236
    Page views
  • 177
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Brian Q Geuther et al.
    Research Article Updated

    Automated detection of complex animal behaviors remains a challenging problem in neuroscience, particularly for behaviors that consist of disparate sequential motions. Grooming is a prototypical stereotyped behavior that is often used as an endophenotype in psychiatric genetics. Here, we used mouse grooming behavior as an example and developed a general purpose neural network architecture capable of dynamic action detection at human observer-level performance and operating across dozens of mouse strains with high visual diversity. We provide insights into the amount of human annotated training data that are needed to achieve such performance. We surveyed grooming behavior in the open field in 2457 mice across 62 strains, determined its heritable components, conducted GWAS to outline its genetic architecture, and performed PheWAS to link human psychiatric traits through shared underlying genetics. Our general machine learning solution that automatically classifies complex behaviors in large datasets will facilitate systematic studies of behavioral mechanisms.

    1. Computational and Systems Biology
    Michael S Lauer et al.
    Research Article

    A previous report found an association of topic choice with race-based funding disparities among R01 applications submitted to the National Institutes of Health ('NIH') between 2011-2015. Applications submitted by African American or Black ('AAB') Principal Investigators ('PIs') skewed toward a small number of topics that were less likely to be funded (or 'awarded'). It was suggested that lower award rates may be related to topic-related biases of peer reviewers. However, the report did not account for differential funding ecologies among NIH Institutes and Centers ('ICs'). In a re-analysis, we find that 10% of 148 topics account for 50% of applications submitted by AAB PIs. These applications on 'AAB Preferred' topics were funded at lower rates, but peer review outcomes were similar. The lower rate of funding for these topics was primarily due to their assignment to ICs with lower award rates, not to peer-reviewer preferences.