Neural arbitration between social and individual learning systems

  1. Andreea Oliviana Diaconescu  Is a corresponding author
  2. Madeline Stecy
  3. Lars Kasper
  4. Christopher J Burke
  5. Zoltan Nagy
  6. Christoph Mathys
  7. Philippe N Tobler
  1. Centre for Addiction and Mental Health, University of Toronto, Canada
  2. Rutgers Robert Wood Johnson Medical School, United States
  3. Institute for Biomedical Engineering, Switzerland
  4. University of Zurich, Switzerland
  5. Scuola Internazionale Superiore di Studi Avanzati (SISSA), Italy

Abstract

Decision making requires integrating self-gathered information with advice from others. However, the arbitration process by which one source of information is selected over the other has not been fully elucidated. In this study, we formalised arbitration as the relative precision of predictions, afforded by each learning system, using hierarchical Bayesian modelling. In a probabilistic learning task, participants predicted the outcome of a lottery using recommendations from a more informed advisor and/or self-sampled outcomes. Decision confidence, as measured by the number of points participants wagered on their predictions, varied with our relative precision definition of arbitration. Functional neuroimaging demonstrated arbitration signals that were independent of decision confidence and involved modality-specific brain regions. Arbitrating in favour of self-gathered information activated the dorsolateral prefrontal cortex and the midbrain, whereas arbitrating in favour of social information engaged the ventromedial prefrontal cortex and the amygdala. These findings indicate that relative precision captures arbitration between social and individual learning systems at both behavioural and neural levels.

Data availability

Data generated during this study are available in Dryad under the doi:10.5061/dryad.wwpzgmsgs. Source data files have been provided for the main tables and figures. The routines for all analyses are available as Matlab code: https://github.com/andreeadiaconescu/arbitration. The instructions for running the code in order to reproduce the results can be found in the ReadMe file.

The following data sets were generated

Article and author information

Author details

  1. Andreea Oliviana Diaconescu

    Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
    For correspondence
    andreea.diaconescu@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3633-9757
  2. Madeline Stecy

    Medicine, Rutgers Robert Wood Johnson Medical School, New Jersey, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lars Kasper

    MR Technology Group & Translational Neuromodeling Unit, Institute for Biomedical Engineering, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7667-603X
  4. Christopher J Burke

    Laboratory for Social and Neural Systems Research, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Zoltan Nagy

    Laboratory for Social and Neural Systems Research, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Christoph Mathys

    Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Philippe N Tobler

    Department of Economics, Laboratory for Social and Neural Systems Research, University of Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.

Funding

Swiss National Foundation (PZ00P3_167952)

  • Andreea Oliviana Diaconescu

Swiss National Foundation (PP00P1_150739)

  • Philippe N Tobler

Swiss National Foundation (100014_165884)

  • Philippe N Tobler

Swiss National Foundation (100019_176016)

  • Philippe N Tobler

Krembil Foundation

  • Andreea Oliviana Diaconescu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent, and consent to publish, was obtained from all participants. The study was approved by the Ethics Committee of the Canton of Zürich (KEK-ZH 2010-0327). All participants gave written informed consent before taking part in the study.

Copyright

© 2020, Diaconescu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,119
    views
  • 304
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andreea Oliviana Diaconescu
  2. Madeline Stecy
  3. Lars Kasper
  4. Christopher J Burke
  5. Zoltan Nagy
  6. Christoph Mathys
  7. Philippe N Tobler
(2020)
Neural arbitration between social and individual learning systems
eLife 9:e54051.
https://doi.org/10.7554/eLife.54051

Share this article

https://doi.org/10.7554/eLife.54051

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.