1. Computational and Systems Biology
Download icon

Neural arbitration between social and individual learning systems

  1. Andreea Oliviana Diaconescu  Is a corresponding author
  2. Madeline Stecy
  3. Lars Kasper
  4. Christopher J Burke
  5. Zoltan Nagy
  6. Christoph Mathys
  7. Philippe N Tobler
  1. Centre for Addiction and Mental Health, University of Toronto, Canada
  2. Rutgers Robert Wood Johnson Medical School, United States
  3. Institute for Biomedical Engineering, Switzerland
  4. University of Zurich, Switzerland
  5. Scuola Internazionale Superiore di Studi Avanzati (SISSA), Italy
Research Article
  • Cited 1
  • Views 1,411
  • Annotations
Cite this article as: eLife 2020;9:e54051 doi: 10.7554/eLife.54051

Abstract

Decision making requires integrating self-gathered information with advice from others. However, the arbitration process by which one source of information is selected over the other has not been fully elucidated. In this study, we formalised arbitration as the relative precision of predictions, afforded by each learning system, using hierarchical Bayesian modelling. In a probabilistic learning task, participants predicted the outcome of a lottery using recommendations from a more informed advisor and/or self-sampled outcomes. Decision confidence, as measured by the number of points participants wagered on their predictions, varied with our relative precision definition of arbitration. Functional neuroimaging demonstrated arbitration signals that were independent of decision confidence and involved modality-specific brain regions. Arbitrating in favour of self-gathered information activated the dorsolateral prefrontal cortex and the midbrain, whereas arbitrating in favour of social information engaged the ventromedial prefrontal cortex and the amygdala. These findings indicate that relative precision captures arbitration between social and individual learning systems at both behavioural and neural levels.

Data availability

Data generated during this study are available in Dryad under the doi:10.5061/dryad.wwpzgmsgs. Source data files have been provided for the main tables and figures. The routines for all analyses are available as Matlab code: https://github.com/andreeadiaconescu/arbitration. The instructions for running the code in order to reproduce the results can be found in the ReadMe file.

The following data sets were generated

Article and author information

Author details

  1. Andreea Oliviana Diaconescu

    Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
    For correspondence
    andreea.diaconescu@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3633-9757
  2. Madeline Stecy

    Medicine, Rutgers Robert Wood Johnson Medical School, New Jersey, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lars Kasper

    MR Technology Group & Translational Neuromodeling Unit, Institute for Biomedical Engineering, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7667-603X
  4. Christopher J Burke

    Laboratory for Social and Neural Systems Research, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Zoltan Nagy

    Laboratory for Social and Neural Systems Research, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Christoph Mathys

    Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Philippe N Tobler

    Department of Economics, Laboratory for Social and Neural Systems Research, University of Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.

Funding

Swiss National Foundation (PZ00P3_167952)

  • Andreea Oliviana Diaconescu

Swiss National Foundation (PP00P1_150739)

  • Philippe N Tobler

Swiss National Foundation (100014_165884)

  • Philippe N Tobler

Swiss National Foundation (100019_176016)

  • Philippe N Tobler

Krembil Foundation

  • Andreea Oliviana Diaconescu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent, and consent to publish, was obtained from all participants. The study was approved by the Ethics Committee of the Canton of Zürich (KEK-ZH 2010-0327). All participants gave written informed consent before taking part in the study.

Reviewing Editor

  1. Woo-Young Ahn, Seoul National University, Korea (South), Republic of

Publication history

  1. Received: November 28, 2019
  2. Accepted: August 10, 2020
  3. Accepted Manuscript published: August 11, 2020 (version 1)
  4. Version of Record published: September 7, 2020 (version 2)

Copyright

© 2020, Diaconescu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,411
    Page views
  • 198
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Hongfei Ji et al.
    Research Article

    Neural circuits coordinate with muscles and sensory feedback to generate motor behaviors appropriate to an animal’s environment. In C. elegans, the mechanisms by which the motor circuit generates undulations and modulates them based on the environment are largely unclear. We quantitatively analyzed C. elegans locomotion during free movement and during transient optogenetic muscle inhibition. Undulatory movements were highly asymmetrical with respect to the duration of bending and unbending during each cycle. Phase response curves induced by brief optogenetic inhibition of head muscles showed gradual increases and rapid decreases as a function of phase at which the perturbation was applied. A relaxation oscillator model based on proprioceptive thresholds that switch the active muscle moment was developed and is shown to quantitatively agree with data from free movement, phase responses, and previous results for gait adaptation to mechanical loadings. Our results suggest a neuromuscular mechanism underlying C. elegans motor pattern generation within a compact circuit.

    1. Computational and Systems Biology
    Christopher P Mancuso et al.
    Research Article Updated

    Environmental disturbances have long been theorized to play a significant role in shaping the diversity and composition of ecosystems. However, an inability to specify the characteristics of a disturbance experimentally has produced an inconsistent picture of diversity-disturbance relationships (DDRs). Here, using a high-throughput programmable culture system, we subjected a soil-derived bacterial community to dilution disturbance profiles with different intensities (mean dilution rates), applied either constantly or with fluctuations of different frequencies. We observed an unexpected U-shaped relationship between community diversity and disturbance intensity in the absence of fluctuations. Adding fluctuations increased community diversity and erased the U-shape. All our results are well-captured by a Monod consumer resource model, which also explains how U-shaped DDRs emerge via a novel ‘niche flip’ mechanism. Broadly, our combined experimental and modeling framework demonstrates how distinct features of an environmental disturbance can interact in complex ways to govern ecosystem assembly and offers strategies for reshaping the composition of microbiomes.