Combining magnetoencephalography with magnetic resonance imaging enhances learning of surrogate-biomarkers

Abstract

Electrophysiological methods, i.e., M/EEG provide unique views into brain health. Yet, when building predictive models from brain data, it is often unclear how electrophysiology should be combined with other neuroimaging methods. Information can be redundant, useful common representations of multimodal data may not be obvious and multimodal data collection can be medically contraindicated, which reduces applicability. Here, we propose a multimodal model to robustly combine MEG, MRI and fMRI for prediction. We focus on age prediction as a surrogate biomarker in 674 subjects from the Cam-CAN dataset. Strikingly, MEG, fMRI and MRI showed additive effects supporting distinct brain-behavior associations. Moreover, the contribution of MEG was best explained by cortical power spectra between 8 and 30 Hz. Finally, we demonstrate that the model preserves benefits of stacking when some data is missing. The proposed framework, hence, enables multimodal learning for a wide range of biomarkers from diverse types of brain signals.

Data availability

We used the publicly available Cam-CAN dataset. All software and code necessary to obtain the derivative data is shared on github: https://github.com/dengemann/meg-mri-surrogate-biomarkers-aging-2020

The following previously published data sets were used

Article and author information

Author details

  1. Denis Alexander Engemann

    Parietal, Inria Saclay, Palaiseau, France
    For correspondence
    denis-alexander.engemann@inria.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7223-1014
  2. Oleh Kozynets

    Parietal, Inria Saclay, Palaiseau, France
    Competing interests
    No competing interests declared.
  3. David Sabbagh

    Parietal, Inria Saclay, Palaiseau, France
    Competing interests
    No competing interests declared.
  4. Guillaume Lemaître

    Parietal, Inria Saclay, Palaiseau, France
    Competing interests
    No competing interests declared.
  5. Gaël Varoquaux

    Parietal, Inria Saclay, Palaiseau, France
    Competing interests
    Gaël Varoquaux, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1076-5122
  6. Franziskus Liem

    Dynamics of Healthy Aging, University of Zürich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
  7. Alexandre Gramfort

    Parietal, Inria Saclay, Palaiseau, France
    Competing interests
    No competing interests declared.

Funding

H2020 European Research Council (SLAB ERC-YStG-676943)

  • Alexandre Gramfort

French National Institute of Computer Science (Medecine Numerique)

  • Denis Alexander Engemann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alexander Shackman, University of Maryland, United States

Ethics

Human subjects: This study is conducted in compliance with the Helsinki Declaration. No experiments on living beings were performed for this study. The data that we used was acquired by the Cam-CAN consortium and has been approved by the local ethics committee, Cambridgeshire 2 Research Ethics Committee (reference: 10/H0308/50).

Version history

  1. Received: November 29, 2019
  2. Accepted: May 9, 2020
  3. Accepted Manuscript published: May 19, 2020 (version 1)
  4. Version of Record published: June 22, 2020 (version 2)

Copyright

© 2020, Engemann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,968
    views
  • 540
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Denis Alexander Engemann
  2. Oleh Kozynets
  3. David Sabbagh
  4. Guillaume Lemaître
  5. Gaël Varoquaux
  6. Franziskus Liem
  7. Alexandre Gramfort
(2020)
Combining magnetoencephalography with magnetic resonance imaging enhances learning of surrogate-biomarkers
eLife 9:e54055.
https://doi.org/10.7554/eLife.54055

Share this article

https://doi.org/10.7554/eLife.54055

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.