1. Genetics and Genomics
Download icon

Genetic profiling of protein burden and nuclear export overload

  1. Reiko Kintaka
  2. Koji Makanae
  3. Shotaro Namba
  4. Hisaaki Kato
  5. Keiji Kito
  6. Shinsuke Ohnuki
  7. Yoshikazu Ohya
  8. Brenda J Andrews
  9. Charles Boone
  10. Hisao Moriya  Is a corresponding author
  1. University of Toronto, Canada
  2. Okayama University, Japan
  3. Meiji University, Japan
  4. University of Tokyo, Japan
Research Article
  • Cited 0
  • Views 1,922
  • Annotations
Cite this article as: eLife 2020;9:e54080 doi: 10.7554/eLife.54080

Abstract

Overproduction (op) of proteins triggers cellular defects. One of the consequences of overproduction is the protein burden/cost, which is produced by an overloading of the protein synthesis process. However, the physiology of cells under a protein burden is not well characterized. We performed genetic profiling of protein burden by systematic analysis of genetic interactions between GFP-op, surveying both deletion and temperature-sensitive mutants in budding yeast. We also performed genetic profiling in cells with overproduction of triple-GFP (tGFP), and the nuclear export signal-containing tGFP (NES-tGFP). The mutants specifically interacted with GFP-op were suggestive of unexpected connections between actin-related processes like polarization and the protein burden, which was supported by morphological analysis. The tGFP-op interactions suggested that this protein probe overloads the proteasome, whereas those that interacted with NES-tGFP involved genes encoding components of the nuclear export process, providing a resource for further analysis of the protein burden and nuclear export overload.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Reiko Kintaka

    Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Koji Makanae

    Research Core for Interdisciplinary Sciences, Okayama University, Kita-ku, Okayama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Shotaro Namba

    Matching Program Course, Okayama University, Okayama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Hisaaki Kato

    Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Keiji Kito

    Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Shinsuke Ohnuki

    Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Yoshikazu Ohya

    Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0837-1239
  8. Brenda J Andrews

    Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Charles Boone

    Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Hisao Moriya

    Research Core for Interdisciplinary Sciences, Okayama University, Kita-ku, Okayama, Japan
    For correspondence
    hisaom@cc.okayama-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7638-3640

Funding

Japan Society for the Promotion of Science (17H03618)

  • Hisao Moriya

Japan Society for the Promotion of Science (15KK0258)

  • Hisao Moriya

Japan Society for the Promotion of Science (18K19300)

  • Hisao Moriya

Japan Society for the Promotion of Science (20H03242)

  • Hisao Moriya

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nir Ben-Tal, Tel Aviv University, Israel

Publication history

  1. Received: December 2, 2019
  2. Accepted: November 1, 2020
  3. Accepted Manuscript published: November 4, 2020 (version 1)
  4. Version of Record published: November 18, 2020 (version 2)

Copyright

© 2020, Kintaka et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,922
    Page views
  • 182
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Genetics and Genomics
    2. Plant Biology
    Markus Pfenninger et al.
    Research Article

    In the course of global climate change, central Europe is experiencing more frequent and prolonged periods of drought. The drought years 2018 and 2019 affected European beeches (Fagus sylvatica L.) differently: even in the same stand, drought damaged trees neighboured healthy trees, suggesting that the genotype rather than the environment was responsible for this conspicuous pattern. We used this natural experiment to study the genomic basis of drought resistance with Pool-GWAS. Contrasting the extreme phenotypes identified 106 significantly associated SNPs throughout the genome. Most annotated genes with associated SNPs (>70%) were previously implicated in the drought reaction of plants. Non-synonymous substitutions led either to a functional amino acid exchange or premature termination. A SNP-assay with 70 loci allowed predicting drought phenotype in 98.6% of a validation sample of 92 trees. Drought resistance in European beech is a moderately polygenic trait that should respond well to natural selection, selective management, and breeding.

    1. Genetics and Genomics
    Kevin H-C Wei et al.
    Research Article

    Heterochromatin is a key architectural feature of eukaryotic genomes crucial for silencing of repetitive elements. During Drosophila embryonic cellularization, heterochromatin rapidly appears over repetitive sequences but the molecular details of how heterochromatin is established are poorly understood. Here, we map the genome-wide distribution of H3K9me3-dependent heterochromatin in individual embryos of Drosophila miranda at precisely-staged developmental time points. We find that canonical H3K9me3 enrichment is established prior to cellularization, and matures into stable and broad heterochromatin domains through development. Intriguingly, initial nucleation sites of H3K9me3 enrichment appear as early as embryonic stage3 over transposable elements (TE) and progressively broaden, consistent with spreading to neighboring nucleosomes. The earliest nucleation sites are limited to specific regions of a small number of recently active retrotransposon families and often appear over promoter and 5' regions of LTR retrotransposons, while late nucleation develops broadly across the entirety of most TEs. Interestingly, early nucleating TEs are strongly associated with abundant maternal piRNAs and show early zygotic transcription. These results support a model of piRNA-associated co-transcriptional silencing while also suggesting additional mechanisms for site-restricted H3K9me3 nucleation at TEs in pre-cellular Drosophila embryos.