Genetic profiling of protein burden and nuclear export overload

  1. Reiko Kintaka
  2. Koji Makanae
  3. Shotaro Namba
  4. Hisaaki Kato
  5. Keiji Kito
  6. Shinsuke Ohnuki
  7. Yoshikazu Ohya
  8. Brenda J Andrews
  9. Charles Boone
  10. Hisao Moriya  Is a corresponding author
  1. University of Toronto, Canada
  2. Okayama University, Japan
  3. Meiji University, Japan
  4. University of Tokyo, Japan

Abstract

Overproduction (op) of proteins triggers cellular defects. One of the consequences of overproduction is the protein burden/cost, which is produced by an overloading of the protein synthesis process. However, the physiology of cells under a protein burden is not well characterized. We performed genetic profiling of protein burden by systematic analysis of genetic interactions between GFP-op, surveying both deletion and temperature-sensitive mutants in budding yeast. We also performed genetic profiling in cells with overproduction of triple-GFP (tGFP), and the nuclear export signal-containing tGFP (NES-tGFP). The mutants specifically interacted with GFP-op were suggestive of unexpected connections between actin-related processes like polarization and the protein burden, which was supported by morphological analysis. The tGFP-op interactions suggested that this protein probe overloads the proteasome, whereas those that interacted with NES-tGFP involved genes encoding components of the nuclear export process, providing a resource for further analysis of the protein burden and nuclear export overload.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Reiko Kintaka

    Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Koji Makanae

    Research Core for Interdisciplinary Sciences, Okayama University, Kita-ku, Okayama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Shotaro Namba

    Matching Program Course, Okayama University, Okayama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Hisaaki Kato

    Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Keiji Kito

    Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Shinsuke Ohnuki

    Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Yoshikazu Ohya

    Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0837-1239
  8. Brenda J Andrews

    Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Charles Boone

    Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Hisao Moriya

    Research Core for Interdisciplinary Sciences, Okayama University, Kita-ku, Okayama, Japan
    For correspondence
    hisaom@cc.okayama-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7638-3640

Funding

Japan Society for the Promotion of Science (17H03618)

  • Hisao Moriya

Japan Society for the Promotion of Science (15KK0258)

  • Hisao Moriya

Japan Society for the Promotion of Science (18K19300)

  • Hisao Moriya

Japan Society for the Promotion of Science (20H03242)

  • Hisao Moriya

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nir Ben-Tal, Tel Aviv University, Israel

Version history

  1. Received: December 2, 2019
  2. Accepted: November 1, 2020
  3. Accepted Manuscript published: November 4, 2020 (version 1)
  4. Version of Record published: November 18, 2020 (version 2)

Copyright

© 2020, Kintaka et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,763
    Page views
  • 250
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Reiko Kintaka
  2. Koji Makanae
  3. Shotaro Namba
  4. Hisaaki Kato
  5. Keiji Kito
  6. Shinsuke Ohnuki
  7. Yoshikazu Ohya
  8. Brenda J Andrews
  9. Charles Boone
  10. Hisao Moriya
(2020)
Genetic profiling of protein burden and nuclear export overload
eLife 9:e54080.
https://doi.org/10.7554/eLife.54080

Share this article

https://doi.org/10.7554/eLife.54080

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.

    1. Genetics and Genomics
    Pianpian Zhao, Zhifeng Sheng ... Hou-Feng Zheng
    Research Article

    The ‘diabetic bone paradox’ suggested that type 2 diabetes (T2D) patients would have higher areal bone mineral density (BMD) but higher fracture risk than individuals without T2D. In this study, we found that the genetically predicted T2D was associated with higher BMD and lower risk of fracture in both weighted genetic risk score (wGRS) and two-sample Mendelian randomization (MR) analyses. We also identified ten genomic loci shared between T2D and fracture, with the top signal at SNP rs4580892 in the intron of gene RSPO3. And the higher expression in adipose subcutaneous and higher protein level in plasma of RSPO3 were associated with increased risk of T2D, but decreased risk of fracture. In the prospective study, T2D was observed to be associated with higher risk of fracture, but BMI mediated 30.2% of the protective effect. However, when stratified by the T2D-related risk factors for fracture, we observed that the effect of T2D on the risk of fracture decreased when the number of T2D-related risk factors decreased, and the association became non-significant if the T2D patients carried none of the risk factors. In conclusion, the genetically determined T2D might not be associated with higher risk of fracture. And the shared genetic architecture between T2D and fracture suggested a top signal around RSPO3 gene. The observed effect size of T2D on fracture risk decreased if the T2D-related risk factors could be eliminated. Therefore, it is important to manage the complications of T2D to prevent the risk of fracture.