Genetic profiling of protein burden and nuclear export overload

  1. Reiko Kintaka
  2. Koji Makanae
  3. Shotaro Namba
  4. Hisaaki Kato
  5. Keiji Kito
  6. Shinsuke Ohnuki
  7. Yoshikazu Ohya
  8. Brenda J Andrews
  9. Charles Boone
  10. Hisao Moriya  Is a corresponding author
  1. University of Toronto, Canada
  2. Okayama University, Japan
  3. Meiji University, Japan
  4. University of Tokyo, Japan

Abstract

Overproduction (op) of proteins triggers cellular defects. One of the consequences of overproduction is the protein burden/cost, which is produced by an overloading of the protein synthesis process. However, the physiology of cells under a protein burden is not well characterized. We performed genetic profiling of protein burden by systematic analysis of genetic interactions between GFP-op, surveying both deletion and temperature-sensitive mutants in budding yeast. We also performed genetic profiling in cells with overproduction of triple-GFP (tGFP), and the nuclear export signal-containing tGFP (NES-tGFP). The mutants specifically interacted with GFP-op were suggestive of unexpected connections between actin-related processes like polarization and the protein burden, which was supported by morphological analysis. The tGFP-op interactions suggested that this protein probe overloads the proteasome, whereas those that interacted with NES-tGFP involved genes encoding components of the nuclear export process, providing a resource for further analysis of the protein burden and nuclear export overload.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Reiko Kintaka

    Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Koji Makanae

    Research Core for Interdisciplinary Sciences, Okayama University, Kita-ku, Okayama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Shotaro Namba

    Matching Program Course, Okayama University, Okayama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Hisaaki Kato

    Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Keiji Kito

    Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Shinsuke Ohnuki

    Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Yoshikazu Ohya

    Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0837-1239
  8. Brenda J Andrews

    Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Charles Boone

    Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Hisao Moriya

    Research Core for Interdisciplinary Sciences, Okayama University, Kita-ku, Okayama, Japan
    For correspondence
    hisaom@cc.okayama-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7638-3640

Funding

Japan Society for the Promotion of Science (17H03618)

  • Hisao Moriya

Japan Society for the Promotion of Science (15KK0258)

  • Hisao Moriya

Japan Society for the Promotion of Science (18K19300)

  • Hisao Moriya

Japan Society for the Promotion of Science (20H03242)

  • Hisao Moriya

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Kintaka et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,836
    views
  • 255
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Reiko Kintaka
  2. Koji Makanae
  3. Shotaro Namba
  4. Hisaaki Kato
  5. Keiji Kito
  6. Shinsuke Ohnuki
  7. Yoshikazu Ohya
  8. Brenda J Andrews
  9. Charles Boone
  10. Hisao Moriya
(2020)
Genetic profiling of protein burden and nuclear export overload
eLife 9:e54080.
https://doi.org/10.7554/eLife.54080

Share this article

https://doi.org/10.7554/eLife.54080

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Nathan D Harry, Christina Zakas
    Research Article

    New developmental programs can evolve through adaptive changes to gene expression. The annelid Streblospio benedicti has a developmental dimorphism, which provides a unique intraspecific framework for understanding the earliest genetic changes that take place during developmental divergence. Using comparative RNAseq through ontogeny, we find that only a small proportion of genes are differentially expressed at any time, despite major differences in larval development and life history. These genes shift expression profiles across morphs by either turning off any expression in one morph or changing the timing or amount of gene expression. We directly connect the contributions of these mechanisms to differences in developmental processes. We examine F1 offspring – using reciprocal crosses – to determine maternal mRNA inheritance and the regulatory architecture of gene expression. These results highlight the importance of both novel gene expression and heterochronic shifts in developmental evolution, as well as the trans-acting regulatory factors in initiating divergence.

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Wei Q Deng, Nathan Cawte ... Sonia S Anand
    Research Article

    Background:

    Maternal smoking has been linked to adverse health outcomes in newborns but the extent to which it impacts newborn health has not been quantified through an aggregated cord blood DNA methylation (DNAm) score. Here, we examine the feasibility of using cord blood DNAm scores leveraging large external studies as discovery samples to capture the epigenetic signature of maternal smoking and its influence on newborns in White European and South Asian populations.

    Methods:

    We first examined the association between individual CpGs and cigarette smoking during pregnancy, and smoking exposure in two White European birth cohorts (n=744). Leveraging established CpGs for maternal smoking, we constructed a cord blood epigenetic score of maternal smoking that was validated in one of the European-origin cohorts (n=347). This score was then tested for association with smoking status, secondary smoking exposure during pregnancy, and health outcomes in offspring measured after birth in an independent White European (n=397) and a South Asian birth cohort (n=504).

    Results:

    Several previously reported genes for maternal smoking were supported, with the strongest and most consistent association signal from the GFI1 gene (6 CpGs with p<5 × 10-5). The epigenetic maternal smoking score was strongly associated with smoking status during pregnancy (OR = 1.09 [1.07, 1.10], p=5.5 × 10-33) and more hours of self-reported smoking exposure per week (1.93 [1.27, 2.58], p=7.8 × 10-9) in White Europeans. However, it was not associated with self-reported exposure (p>0.05) among South Asians, likely due to a lack of smoking in this group. The same score was consistently associated with a smaller birth size (–0.37±0.12 cm, p=0.0023) in the South Asian cohort and a lower birth weight (–0.043±0.013 kg, p=0.0011) in the combined cohorts.

    Conclusions:

    This cord blood epigenetic score can help identify babies exposed to maternal smoking and assess its long-term impact on growth. Notably, these results indicate a consistent association between the DNAm signature of maternal smoking and a small body size and low birth weight in newborns, in both White European mothers who exhibited some amount of smoking and in South Asian mothers who themselves were not active smokers.

    Funding:

    This study was funded by the Canadian Institutes of Health Research Metabolomics Team Grant: MWG-146332.