Topology-driven protein-protein interaction network analysis detects genetic sub-networks regulating reproductive capacity

  1. Tarun Kumar
  2. Leo Blondel
  3. Cassandra G Extavour  Is a corresponding author
  1. Harvard University, United States

Abstract

Understanding the genetic regulation of organ structure is a fundamental problem in developmental biology. Here, we use egg-producing structures of insect ovaries, called ovarioles, to deduce systems-level gene regulatory relationships from quantitative functional genetic analysis. We previously showed that Hippo signalling, a conserved regulator of animal organ size, regulates ovariole number in Drosophila melanogaster. To comprehensively determine how Hippo signalling interacts with other pathways in this regulation, we screened all known signalling pathway genes, and identified Hpo-dependent and Hpo-independent signalling requirements. Network analysis of known protein-protein interactions among screen results identified independent gene regulatory sub-networks regulating one or both of ovariole number and egg laying. These sub-networks predict involvement of previously uncharacterised genes with higher accuracy than the original candidate screen. This shows that network analysis combining functional genetic and large-scale interaction data can predict function of novel genes regulating development.

Data availability

This study did not generate new unique reagents. This study generated new python3 code available on GitHub: https://github.com/extavourlab/hpo_ova_eggL_screen.

Article and author information

Author details

  1. Tarun Kumar

    Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4071-4342
  2. Leo Blondel

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2276-4821
  3. Cassandra G Extavour

    Department of Organismic and Evolutionary Biology/Molecular and Cellular Biology, Harvard University, Cambridge, United States
    For correspondence
    extavour@oeb.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2922-5855

Funding

National Institutes of Health (1R01-HD073499)

  • Tarun Kumar
  • Cassandra G Extavour

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Kumar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,417
    views
  • 251
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tarun Kumar
  2. Leo Blondel
  3. Cassandra G Extavour
(2020)
Topology-driven protein-protein interaction network analysis detects genetic sub-networks regulating reproductive capacity
eLife 9:e54082.
https://doi.org/10.7554/eLife.54082

Share this article

https://doi.org/10.7554/eLife.54082

Further reading

    1. Computational and Systems Biology
    Dylan C Sarver, Muzna Saqib ... G William Wong
    Research Article

    Organ function declines with age, and large-scale transcriptomic analyses have highlighted differential aging trajectories across tissues. The mechanism underlying shared and organ-selective functional changes across the lifespan, however, still remains poorly understood. Given the central role of mitochondria in powering cellular processes needed to maintain tissue health, we therefore undertook a systematic assessment of respiratory activity across 33 different tissues in young (2.5 months) and old (20 months) mice of both sexes. Our high-resolution mitochondrial respiration atlas reveals: (1) within any group of mice, mitochondrial activity varies widely across tissues, with the highest values consistently seen in heart, brown fat, and kidney; (2) biological sex is a significant but minor contributor to mitochondrial respiration, and its contributions are tissue-specific, with major differences seen in the pancreas, stomach, and white adipose tissue; (3) age is a dominant factor affecting mitochondrial activity, especially across most brain regions, different fat depots, skeletal muscle groups, eyes, and different regions of the gastrointestinal tract; (4) age effects can be sex- and tissue-specific, with some of the largest effects seen in pancreas, heart, adipose tissue, and skeletal muscle; and (5) while aging alters the functional trajectories of mitochondria in a majority of tissues, some are remarkably resilient to age-induced changes. Altogether, our data provide the most comprehensive compendium of mitochondrial respiration and illuminate functional signatures of aging across diverse tissues and organ systems.

    1. Computational and Systems Biology
    Alessandro Bitto
    Insight

    Measuring mitochondrial respiration in frozen tissue samples provides the first comprehensive atlas of how aging affects mitochondrial function in mice.