Abstract

Weight loss and anorexia are common symptoms in cancer patients that occur prior to initiation of cancer therapy. Inflammation in the brain is a driver of these symptoms, yet cellular sources of neuroinflammation during malignancy are unknown. In a mouse model of pancreatic ductal adenocarcinoma (PDAC), we observed early and robust myeloid cell infiltration into the brain. Infiltrating immune cells were predominately neutrophils, which accumulated at a unique central nervous system entry portal called the velum interpositum, where they expressed CCR2. Pharmacologic CCR2 blockade and genetic deletion of Ccr2 both resulted in significantly decreased brain-infiltrating myeloid cells as well as attenuated cachexia during PDAC. Lastly, intracerebroventricular blockade of the purinergic receptor P2RX7 during PDAC abolished immune cell recruitment to the brain and attenuated anorexia. Our data demonstrate a novel function for the CCR2/CCL2 axis in recruiting neutrophils to the brain, which drives anorexia and muscle catabolism.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Sequencing data have been deposited in GEO under accession code GSE15006

The following data sets were generated

Article and author information

Author details

  1. Kevin Glenn Burfeind

    Pediatrics, Oregon Health & Science University, Portland, United States
    For correspondence
    burfeind@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4192-6753
  2. Xinxia Zhu

    Pediatrics, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mason Andrew Norgard

    Pediatrics, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Peter Robert Levasseur

    Pediatrics, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christian Huisman

    Pediatrics, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Abigail C Buenafe

    Pediatrics, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Brennan Olson

    Pediatrics, MD/PhD Program, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Katherine A Michaelis

    Pediatrics, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3225-3649
  9. Eileen Ruth Samson Torres

    Behavioral Neuroscience, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5340-8734
  10. Sophia Jeng

    Biostatistics, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Shannon McWeeney

    Biostatistics, Knight Cancer Institute, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Jacob Raber

    Behavioral Neuroscience, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9861-9893
  13. Daniel L Marks

    Pediatrics, Oregon Health & Science University, Portland, United States
    For correspondence
    marksd@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2675-7047

Funding

National Cancer Institute (R01CA184324-01)

  • Daniel L Marks

National Cancer Institute (R01CA217989-01)

  • Daniel L Marks

Brenden-Colson Center for Pancreatic Care

  • Daniel L Marks

National Cancer Institute (5F30CA213745)

  • Kevin Glenn Burfeind

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of Oregon Health & Science University. The protocol was approved by the Department of Comparative Medicine of Oregon Health & Science University (protocol IP00038). All surgery was performed under isofluorane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2020, Burfeind et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,118
    views
  • 475
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kevin Glenn Burfeind
  2. Xinxia Zhu
  3. Mason Andrew Norgard
  4. Peter Robert Levasseur
  5. Christian Huisman
  6. Abigail C Buenafe
  7. Brennan Olson
  8. Katherine A Michaelis
  9. Eileen Ruth Samson Torres
  10. Sophia Jeng
  11. Shannon McWeeney
  12. Jacob Raber
  13. Daniel L Marks
(2020)
Circulating myeloid cells invade the central nervous system to mediate cachexia during pancreatic cancer
eLife 9:e54095.
https://doi.org/10.7554/eLife.54095

Share this article

https://doi.org/10.7554/eLife.54095

Further reading

    1. Immunology and Inflammation
    Graham L Barlow, Christian M Schürch ... Paul L Bollyky
    Research Article

    In autoimmune type 1 diabetes (T1D), immune cells infiltrate and destroy the islets of Langerhans — islands of endocrine tissue dispersed throughout the pancreas. However, the contribution of cellular programs outside islets to insulitis is unclear. Here, using CO-Detection by indEXing (CODEX) tissue imaging and cadaveric pancreas samples, we simultaneously examine islet and extra-islet inflammation in human T1D. We identify four sub-states of inflamed islets characterized by the activation profiles of CD8+T cells enriched in islets relative to the surrounding tissue. We further find that the extra-islet space of lobules with extensive islet-infiltration differs from the extra-islet space of less infiltrated areas within the same tissue section. Finally, we identify lymphoid structures away from islets enriched in CD45RA+ T cells — a population also enriched in one of the inflamed islet sub-states. Together, these data help define the coordination between islets and the extra-islet pancreas in the pathogenesis of human T1D.

    1. Cell Biology
    2. Immunology and Inflammation
    Mykhailo Vladymyrov, Luca Marchetti ... Britta Engelhardt
    Tools and Resources

    The endothelial blood-brain barrier (BBB) strictly controls immune cell trafficking into the central nervous system (CNS). In neuroinflammatory diseases such as multiple sclerosis, this tight control is, however, disturbed, leading to immune cell infiltration into the CNS. The development of in vitro models of the BBB combined with microfluidic devices has advanced our understanding of the cellular and molecular mechanisms mediating the multistep T-cell extravasation across the BBB. A major bottleneck of these in vitro studies is the absence of a robust and automated pipeline suitable for analyzing and quantifying the sequential interaction steps of different immune cell subsets with the BBB under physiological flow in vitro. Here, we present the under-flow migration tracker (UFMTrack) framework for studying immune cell interactions with endothelial monolayers under physiological flow. We then showcase a pipeline built based on it to study the entire multistep extravasation cascade of immune cells across brain microvascular endothelial cells under physiological flow in vitro. UFMTrack achieves 90% track reconstruction efficiency and allows for scaling due to the reduction of the analysis cost and by eliminating experimenter bias. This allowed for an in-depth analysis of all behavioral regimes involved in the multistep immune cell extravasation cascade. The study summarizes how UFMTrack can be employed to delineate the interactions of CD4+ and CD8+ T cells with the BBB under physiological flow. We also demonstrate its applicability to the other BBB models, showcasing broader applicability of the developed framework to a range of immune cell-endothelial monolayer interaction studies. The UFMTrack framework along with the generated datasets is publicly available in the corresponding repositories.