1. Immunology and Inflammation
  2. Neuroscience
Download icon

Circulating myeloid cells invade the central nervous system to mediate cachexia during pancreatic cancer

Research Article
  • Cited 12
  • Views 1,916
  • Annotations
Cite this article as: eLife 2020;9:e54095 doi: 10.7554/eLife.54095

Abstract

Weight loss and anorexia are common symptoms in cancer patients that occur prior to initiation of cancer therapy. Inflammation in the brain is a driver of these symptoms, yet cellular sources of neuroinflammation during malignancy are unknown. In a mouse model of pancreatic ductal adenocarcinoma (PDAC), we observed early and robust myeloid cell infiltration into the brain. Infiltrating immune cells were predominately neutrophils, which accumulated at a unique central nervous system entry portal called the velum interpositum, where they expressed CCR2. Pharmacologic CCR2 blockade and genetic deletion of Ccr2 both resulted in significantly decreased brain-infiltrating myeloid cells as well as attenuated cachexia during PDAC. Lastly, intracerebroventricular blockade of the purinergic receptor P2RX7 during PDAC abolished immune cell recruitment to the brain and attenuated anorexia. Our data demonstrate a novel function for the CCR2/CCL2 axis in recruiting neutrophils to the brain, which drives anorexia and muscle catabolism.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Sequencing data have been deposited in GEO under accession code GSE15006

The following data sets were generated

Article and author information

Author details

  1. Kevin Glenn Burfeind

    Pediatrics, Oregon Health & Science University, Portland, United States
    For correspondence
    burfeind@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4192-6753
  2. Xinxia Zhu

    Pediatrics, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mason Andrew Norgard

    Pediatrics, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Peter Robert Levasseur

    Pediatrics, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christian Huisman

    Pediatrics, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Abigail C Buenafe

    Pediatrics, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Brennan Olson

    Pediatrics, MD/PhD Program, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Katherine A Michaelis

    Pediatrics, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3225-3649
  9. Eileen Ruth Samson Torres

    Behavioral Neuroscience, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5340-8734
  10. Sophia Jeng

    Biostatistics, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Shannon McWeeney

    Biostatistics, Knight Cancer Institute, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Jacob Raber

    Behavioral Neuroscience, Oregon Health & Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9861-9893
  13. Daniel L Marks

    Pediatrics, Oregon Health & Science University, Portland, United States
    For correspondence
    marksd@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2675-7047

Funding

National Cancer Institute (R01CA184324-01)

  • Daniel L Marks

National Cancer Institute (R01CA217989-01)

  • Daniel L Marks

Brenden-Colson Center for Pancreatic Care

  • Daniel L Marks

National Cancer Institute (5F30CA213745)

  • Kevin Glenn Burfeind

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of Oregon Health & Science University. The protocol was approved by the Department of Comparative Medicine of Oregon Health & Science University (protocol IP00038). All surgery was performed under isofluorane anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Yuting Ma, Suzhou Institute of Systems Medicine, China

Publication history

  1. Received: December 2, 2019
  2. Accepted: April 21, 2020
  3. Accepted Manuscript published: May 11, 2020 (version 1)
  4. Version of Record published: May 26, 2020 (version 2)

Copyright

© 2020, Burfeind et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,916
    Page views
  • 299
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Ilana Fox-Fisher et al.
    Research Article Updated

    Blood cell counts often fail to report on immune processes occurring in remote tissues. Here, we use immune cell type-specific methylation patterns in circulating cell-free DNA (cfDNA) for studying human immune cell dynamics. We characterized cfDNA released from specific immune cell types in healthy individuals (N = 242), cross sectionally and longitudinally. Immune cfDNA levels had no individual steady state as opposed to blood cell counts, suggesting that cfDNA concentration reflects adjustment of cell survival to maintain homeostatic cell numbers. We also observed selective elevation of immune-derived cfDNA upon perturbations of immune homeostasis. Following influenza vaccination (N = 92), B-cell-derived cfDNA levels increased prior to elevated B-cell counts and predicted efficacy of antibody production. Patients with eosinophilic esophagitis (N = 21) and B-cell lymphoma (N = 27) showed selective elevation of eosinophil and B-cell cfDNA, respectively, which were undetectable by cell counts in blood. Immune-derived cfDNA provides a novel biomarker for monitoring immune responses to physiological and pathological processes that are not accessible using conventional methods.

    1. Immunology and Inflammation
    Shahanshah Khan et al.
    Research Article

    The pathogenesis of COVID-19 is associated with a hyperinflammatory response; however, the precise mechanism of SARS-CoV-2-induced inflammation is poorly understood. Here we investigated direct inflammatory functions of major structural proteins of SARS-CoV-2. We observed that spike (S) protein potently induced inflammatory cytokines and chemokines including IL-6, IL-1b, TNFa, CXCL1, CXCL2, and CCL2, but not IFNs in human and mouse macrophages. No such inflammatory response was observed in response to membrane (M), envelope (E), and nucleocapsid (N) proteins. When stimulated with extracellular S protein, human and mouse lung epithelial cells also produced inflammatory cytokines and chemokines. Interestingly, epithelial cells expressing S protein intracellularly were non-inflammatory, but elicited an inflammatory response in macrophages when co-cultured. Biochemical studies revealed that S protein triggers inflammation via activation of the NF-kB pathway in a MyD88-dependent manner. Further, such an activation of the NF-kB pathway was abrogated in Tlr2-deficient macrophages. Consistently, administration of S protein induced IL-6, TNF-a, and IL-1b in wild-type, but not Tlr2-deficient mice. Notably, upon recognition of S protein, TLR2 dimerizes with TLR1 or TLR6 to activate the NF-kB pathway. Together these data reveal a mechanism for the cytokine storm during SARS-CoV-2 infection and suggest that TLR2 could be a potential therapeutic target for COVID-19.