Calcium-stimulated disassembly of focal adhesions mediated by an ORP3/IQSec1 complex

  1. Ryan S D'Souza
  2. Jun Y Lim
  3. Alper Turgut
  4. Kelly Servage
  5. Junmei Zhang
  6. Kim Orth
  7. Nisha Sosale
  8. Matthew Lazzara
  9. Jeremy Allegood
  10. James E Casanova  Is a corresponding author
  1. University of Virginia, United States
  2. University of Texas Southwestern Medical Center, United States
  3. HHMI/University of Texas Southwestern Medical Center, United States
  4. Virginia Commonwealth University, United States

Abstract

Coordinated assembly and disassembly of integrin-mediated focal adhesions (FAs) is essential for cell migration. Many studies have shown that FA disassembly requires Ca2+ influx, however our understanding of this process remains incomplete. Here we show that Ca2+ influx via STIM1/Orai1 calcium channels, which cluster near FAs, leads to activation of the GTPase Arf5 via the Ca2+-activated GEF IQSec1, and that both IQSec1 and Arf5 activation are essential for adhesion disassembly. We further show that IQSec1 forms a complex with the lipid transfer protein ORP3, and that Ca2+ influx triggers PKC-dependent translocation of this complex to ER/plasma membrane contact sites adjacent to FAs. In addition to allosterically activating IQSec1, ORP3 also extracts PI4P from the PM, in exchange for phosphatidylcholine. ORP3-mediated lipid exchange is also important for FA turnover. Together, these findings identify a new pathway that links calcium influx to FA turnover during cell migration.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Ryan S D'Souza

    Cell Biology, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  2. Jun Y Lim

    Cell Biology, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  3. Alper Turgut

    Cell Biology, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  4. Kelly Servage

    Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7183-2865
  5. Junmei Zhang

    Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  6. Kim Orth

    Department of Molecular Biology, HHMI/University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    Kim Orth, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0678-7620
  7. Nisha Sosale

    Chemical Engineering, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  8. Matthew Lazzara

    Chemical Engineering, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  9. Jeremy Allegood

    Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, United States
    Competing interests
    No competing interests declared.
  10. James E Casanova

    Cell Biology, University of Virginia, Charlottesville, United States
    For correspondence
    jec9e@virginia.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0858-2899

Funding

National Institute of General Medical Sciences (RO1GM127361)

  • James E Casanova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, D'Souza et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,343
    views
  • 485
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ryan S D'Souza
  2. Jun Y Lim
  3. Alper Turgut
  4. Kelly Servage
  5. Junmei Zhang
  6. Kim Orth
  7. Nisha Sosale
  8. Matthew Lazzara
  9. Jeremy Allegood
  10. James E Casanova
(2020)
Calcium-stimulated disassembly of focal adhesions mediated by an ORP3/IQSec1 complex
eLife 9:e54113.
https://doi.org/10.7554/eLife.54113

Share this article

https://doi.org/10.7554/eLife.54113

Further reading

    1. Cell Biology
    Giuliana Giamundo, Daniela Intartaglia ... Ivan Conte
    Research Article

    Endosomes have emerged as major signaling hubs where different internalized ligand–receptor complexes are integrated and the outcome of signaling pathways are organized to regulate the strength and specificity of signal transduction events. Ezrin, a major membrane–actin linker that assembles and coordinates macromolecular signaling complexes at membranes, has emerged recently as an important regulator of lysosomal function. Here, we report that endosomal-localized EGFR/Ezrin complex interacts with and triggers the inhibition of the Tuberous Sclerosis Complex (TSC complex) in response to EGF stimuli. This is regulated through activation of the AKT signaling pathway. Loss of Ezrin was not sufficient to repress TSC complex by EGF and culminated in translocation of TSC complex to lysosomes triggering suppression of mTORC1 signaling. Overexpression of constitutively active EZRINT567D is sufficient to relocalize TSC complex to the endosomes and reactivate mTORC1. Our findings identify EZRIN as a critical regulator of autophagy via TSC complex in response to EGF stimuli and establish the central role of early endosomal signaling in the regulation of mTORC1. Consistently, Medaka fish deficient for Ezrin exhibit defective endo-lysosomal pathway, attributable to the compromised EGFR/AKT signaling, ultimately leading to retinal degeneration. Our data identify a pivotal mechanism of endo-lysosomal signaling involving Ezrin and its associated EGFR/TSC complex, which are essential for retinal function.

    1. Cell Biology
    Kelsey R Baron, Samantha Oviedo ... R Luke Wiseman
    Research Article

    Excessive mitochondrial fragmentation is associated with the pathologic mitochondrial dysfunction implicated in the pathogenesis of etiologically diverse diseases, including many neurodegenerative disorders. The integrated stress response (ISR) – comprising the four eIF2α kinases PERK, GCN2, PKR, and HRI – is a prominent stress-responsive signaling pathway that regulates mitochondrial morphology and function in response to diverse types of pathologic insult. This suggests that pharmacologic activation of the ISR represents a potential strategy to mitigate pathologic mitochondrial fragmentation associated with human disease. Here, we show that pharmacologic activation of the ISR kinases HRI or GCN2 promotes adaptive mitochondrial elongation and prevents mitochondrial fragmentation induced by the calcium ionophore ionomycin. Further, we show that pharmacologic activation of the ISR reduces mitochondrial fragmentation and restores basal mitochondrial morphology in patient fibroblasts expressing the pathogenic D414V variant of the pro-fusion mitochondrial GTPase MFN2 associated with neurological dysfunctions, including ataxia, optic atrophy, and sensorineural hearing loss. These results identify pharmacologic activation of ISR kinases as a potential strategy to prevent pathologic mitochondrial fragmentation induced by disease-relevant chemical and genetic insults, further motivating the pursuit of highly selective ISR kinase-activating compounds as a therapeutic strategy to mitigate mitochondrial dysfunction implicated in diverse human diseases.