Monoubiquitination by the human Fanconi Anemia core complex clamps FANCI:FANCD2 on DNA in filamentous arrays

  1. Winnie Tan
  2. Sylvie van Twest
  3. Andrew Leis
  4. Rohan Bythell-Douglas
  5. Vincent J Murphy
  6. Michael Sharp
  7. Michael W Parker
  8. Wayne M Crismani
  9. Andrew J Deans  Is a corresponding author
  1. St Vincent's Institute of Medical Research, Australia
  2. University of Melbourne, Australia

Abstract

FANCI:FANCD2 monoubiquitination is a critical event for replication fork stabilization by the Fanconi anemia (FA) DNA repair pathway. It has been proposed that at stalled replication forks, monoubiquitinated-FANCD2 serves to recruit DNA repair proteins that contain ubiquitin-binding motifs. Here we have reconstituted the FA pathway in vitro to study functional consequences of FANCI:FANCD2 monoubiquitination. We report that monoubiquitination does not promote any specific exogenous protein:protein interactions, but instead stabilizes FANCI:FANCD2 heterodimers on dsDNA. This clamping requires monoubiquitination of only the FANCD2 subunit. We further show that purified monoubiquitinated FANCI:FANCD2 forms filament-like arrays on long dsDNA using electron microscopy. Our results reveal how monoubiquitinated FANCI:FANCD2, defective in many cancer types and all cases of FA, is activated upon DNA binding.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Winnie Tan

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Sylvie van Twest

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew Leis

    Department of Biochemistry, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Rohan Bythell-Douglas

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Vincent J Murphy

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael Sharp

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1019-3729
  7. Michael W Parker

    Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3101-1138
  8. Wayne M Crismani

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0143-8293
  9. Andrew J Deans

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    For correspondence
    adeans@svi.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5271-4422

Funding

National Health and Medical Research Council (GNT1123100 and GNT1181110)

  • Andrew J Deans

National Health and Medical Research Council (GNT1156343)

  • Wayne M Crismani

Fanconi Anemia Research Fund

  • Wayne M Crismani
  • Andrew J Deans

Victorian Government's OIS Program

  • Winnie Tan
  • Sylvie van Twest
  • Rohan Bythell-Douglas
  • Vincent J Murphy
  • Michael Sharp
  • Michael W Parker
  • Wayne M Crismani
  • Andrew J Deans

Maddie Riewoldt's Vision

  • Wayne M Crismani
  • Andrew J Deans

Victorian Cancer Agency

  • Andrew J Deans

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Tan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,643
    views
  • 433
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Winnie Tan
  2. Sylvie van Twest
  3. Andrew Leis
  4. Rohan Bythell-Douglas
  5. Vincent J Murphy
  6. Michael Sharp
  7. Michael W Parker
  8. Wayne M Crismani
  9. Andrew J Deans
(2020)
Monoubiquitination by the human Fanconi Anemia core complex clamps FANCI:FANCD2 on DNA in filamentous arrays
eLife 9:e54128.
https://doi.org/10.7554/eLife.54128

Share this article

https://doi.org/10.7554/eLife.54128

Further reading

    1. Chromosomes and Gene Expression
    Shuvra Shekhar Roy, Sulochana Bagri ... Shantanu Chowdhury
    Research Article

    Although the role of G-quadruplex (G4) DNA structures has been suggested in chromosomal looping this was not tested directly. Here, to test causal function, an array of G4s, or control sequence that does not form G4s, were inserted within chromatin in cells. In vivo G4 formation of the inserted G4 sequence array, and not the control sequence, was confirmed using G4-selective antibody. Compared to the control insert, we observed a remarkable increase in the number of 3D chromatin looping interactions from the inserted G4 array. This was evident within the immediate topologically associated domain (TAD) and throughout the genome. Locally, recruitment of enhancer histone marks and the transcriptional coactivator p300/Acetylated-p300 increased in the G4-array, but not in the control insertion. Resulting promoter-enhancer interactions and gene activation were clear up to 5 Mb away from the insertion site. Together, these show the causal role of G4s in enhancer function and long-range chromatin interactions. Mechanisms of 3D topology are primarily based on DNA-bound architectural proteins that induce/stabilize long-range interactions. Involvement of the underlying intrinsic DNA sequence/structure in 3D looping shown here therefore throws new light on how long-range chromosomal interactions might be induced or maintained.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Zhuohan Lao, Kartik D Kamat ... Bin Zhang
    Research Article

    The intricate structural organization of the human nucleus is fundamental to cellular function and gene regulation. Recent advancements in experimental techniques, including high-throughput sequencing and microscopy, have provided valuable insights into nuclear organization. Computational modeling has played significant roles in interpreting experimental observations by reconstructing high-resolution structural ensembles and uncovering organization principles. However, the absence of standardized modeling tools poses challenges for furthering nuclear investigations. We present OpenNucleome—an open-source software designed for conducting GPU-accelerated molecular dynamics simulations of the human nucleus. OpenNucleome offers particle-based representations of chromosomes at a resolution of 100 KB, encompassing nuclear lamina, nucleoli, and speckles. This software furnishes highly accurate structural models of nuclear architecture, affording the means for dynamic simulations of condensate formation, fusion, and exploration of non-equilibrium effects. We applied OpenNucleome to uncover the mechanisms driving the emergence of ‘fixed points’ within the nucleus—signifying genomic loci robustly anchored in proximity to specific nuclear bodies for functional purposes. This anchoring remains resilient even amidst significant fluctuations in chromosome radial positions and nuclear shapes within individual cells. Our findings lend support to a nuclear zoning model that elucidates genome functionality. We anticipate OpenNucleome to serve as a valuable tool for nuclear investigations, streamlining mechanistic explorations and enhancing the interpretation of experimental observations.