Monoubiquitination by the human Fanconi Anemia core complex clamps FANCI:FANCD2 on DNA in filamentous arrays

  1. Winnie Tan
  2. Sylvie van Twest
  3. Andrew Leis
  4. Rohan Bythell-Douglas
  5. Vincent J Murphy
  6. Michael Sharp
  7. Michael W Parker
  8. Wayne M Crismani
  9. Andrew J Deans  Is a corresponding author
  1. St Vincent's Institute of Medical Research, Australia
  2. University of Melbourne, Australia

Abstract

FANCI:FANCD2 monoubiquitination is a critical event for replication fork stabilization by the Fanconi anemia (FA) DNA repair pathway. It has been proposed that at stalled replication forks, monoubiquitinated-FANCD2 serves to recruit DNA repair proteins that contain ubiquitin-binding motifs. Here we have reconstituted the FA pathway in vitro to study functional consequences of FANCI:FANCD2 monoubiquitination. We report that monoubiquitination does not promote any specific exogenous protein:protein interactions, but instead stabilizes FANCI:FANCD2 heterodimers on dsDNA. This clamping requires monoubiquitination of only the FANCD2 subunit. We further show that purified monoubiquitinated FANCI:FANCD2 forms filament-like arrays on long dsDNA using electron microscopy. Our results reveal how monoubiquitinated FANCI:FANCD2, defective in many cancer types and all cases of FA, is activated upon DNA binding.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Winnie Tan

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Sylvie van Twest

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew Leis

    Department of Biochemistry, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Rohan Bythell-Douglas

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Vincent J Murphy

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael Sharp

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1019-3729
  7. Michael W Parker

    Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3101-1138
  8. Wayne M Crismani

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0143-8293
  9. Andrew J Deans

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    For correspondence
    adeans@svi.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5271-4422

Funding

National Health and Medical Research Council (GNT1123100 and GNT1181110)

  • Andrew J Deans

National Health and Medical Research Council (GNT1156343)

  • Wayne M Crismani

Fanconi Anemia Research Fund

  • Wayne M Crismani
  • Andrew J Deans

Victorian Government's OIS Program

  • Winnie Tan
  • Sylvie van Twest
  • Rohan Bythell-Douglas
  • Vincent J Murphy
  • Michael Sharp
  • Michael W Parker
  • Wayne M Crismani
  • Andrew J Deans

Maddie Riewoldt's Vision

  • Wayne M Crismani
  • Andrew J Deans

Victorian Cancer Agency

  • Andrew J Deans

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Tan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,797
    views
  • 446
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Winnie Tan
  2. Sylvie van Twest
  3. Andrew Leis
  4. Rohan Bythell-Douglas
  5. Vincent J Murphy
  6. Michael Sharp
  7. Michael W Parker
  8. Wayne M Crismani
  9. Andrew J Deans
(2020)
Monoubiquitination by the human Fanconi Anemia core complex clamps FANCI:FANCD2 on DNA in filamentous arrays
eLife 9:e54128.
https://doi.org/10.7554/eLife.54128

Share this article

https://doi.org/10.7554/eLife.54128

Further reading

    1. Chromosomes and Gene Expression
    Shihui Chen, Carolyn Marie Phillips
    Research Article

    RNA interference (RNAi) is a conserved pathway that utilizes Argonaute proteins and their associated small RNAs to exert gene regulatory function on complementary transcripts. While the majority of germline-expressed RNAi proteins reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here, we find that the small RNA biogenesis machinery is spatially and temporally organized during Caenorhabditis elegans embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we further demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Steven Henikoff, David L Levens
    Insight

    A new method for mapping torsion provides insights into the ways that the genome responds to the torsion generated by RNA polymerase II.