Monoubiquitination by the human Fanconi Anemia core complex clamps FANCI:FANCD2 on DNA in filamentous arrays

  1. Winnie Tan
  2. Sylvie van Twest
  3. Andrew Leis
  4. Rohan Bythell-Douglas
  5. Vincent J Murphy
  6. Michael Sharp
  7. Michael W Parker
  8. Wayne M Crismani
  9. Andrew J Deans  Is a corresponding author
  1. St Vincent's Institute of Medical Research, Australia
  2. University of Melbourne, Australia

Abstract

FANCI:FANCD2 monoubiquitination is a critical event for replication fork stabilization by the Fanconi anemia (FA) DNA repair pathway. It has been proposed that at stalled replication forks, monoubiquitinated-FANCD2 serves to recruit DNA repair proteins that contain ubiquitin-binding motifs. Here we have reconstituted the FA pathway in vitro to study functional consequences of FANCI:FANCD2 monoubiquitination. We report that monoubiquitination does not promote any specific exogenous protein:protein interactions, but instead stabilizes FANCI:FANCD2 heterodimers on dsDNA. This clamping requires monoubiquitination of only the FANCD2 subunit. We further show that purified monoubiquitinated FANCI:FANCD2 forms filament-like arrays on long dsDNA using electron microscopy. Our results reveal how monoubiquitinated FANCI:FANCD2, defective in many cancer types and all cases of FA, is activated upon DNA binding.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Winnie Tan

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Sylvie van Twest

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew Leis

    Department of Biochemistry, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Rohan Bythell-Douglas

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Vincent J Murphy

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael Sharp

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1019-3729
  7. Michael W Parker

    Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3101-1138
  8. Wayne M Crismani

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0143-8293
  9. Andrew J Deans

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    For correspondence
    adeans@svi.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5271-4422

Funding

National Health and Medical Research Council (GNT1123100 and GNT1181110)

  • Andrew J Deans

National Health and Medical Research Council (GNT1156343)

  • Wayne M Crismani

Fanconi Anemia Research Fund

  • Wayne M Crismani
  • Andrew J Deans

Victorian Government's OIS Program

  • Winnie Tan
  • Sylvie van Twest
  • Rohan Bythell-Douglas
  • Vincent J Murphy
  • Michael Sharp
  • Michael W Parker
  • Wayne M Crismani
  • Andrew J Deans

Maddie Riewoldt's Vision

  • Wayne M Crismani
  • Andrew J Deans

Victorian Cancer Agency

  • Andrew J Deans

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wolf-Dietrich Heyer, University of California, Davis, United States

Version history

  1. Received: December 3, 2019
  2. Accepted: March 12, 2020
  3. Accepted Manuscript published: March 13, 2020 (version 1)
  4. Version of Record published: April 14, 2020 (version 2)

Copyright

© 2020, Tan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,586
    views
  • 427
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Winnie Tan
  2. Sylvie van Twest
  3. Andrew Leis
  4. Rohan Bythell-Douglas
  5. Vincent J Murphy
  6. Michael Sharp
  7. Michael W Parker
  8. Wayne M Crismani
  9. Andrew J Deans
(2020)
Monoubiquitination by the human Fanconi Anemia core complex clamps FANCI:FANCD2 on DNA in filamentous arrays
eLife 9:e54128.
https://doi.org/10.7554/eLife.54128

Share this article

https://doi.org/10.7554/eLife.54128

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.