1. Chromosomes and Gene Expression
Download icon

Monoubiquitination by the human Fanconi Anemia core complex clamps FANCI:FANCD2 on DNA in filamentous arrays

  1. Winnie Tan
  2. Sylvie van Twest
  3. Andrew Leis
  4. Rohan Bythell-Douglas
  5. Vincent J Murphy
  6. Michael Sharp
  7. Michael W Parker
  8. Wayne M Crismani
  9. Andrew J Deans  Is a corresponding author
  1. St Vincent's Institute of Medical Research, Australia
  2. University of Melbourne, Australia
Research Article
  • Cited 25
  • Views 2,300
  • Annotations
Cite this article as: eLife 2020;9:e54128 doi: 10.7554/eLife.54128

Abstract

FANCI:FANCD2 monoubiquitination is a critical event for replication fork stabilization by the Fanconi anemia (FA) DNA repair pathway. It has been proposed that at stalled replication forks, monoubiquitinated-FANCD2 serves to recruit DNA repair proteins that contain ubiquitin-binding motifs. Here we have reconstituted the FA pathway in vitro to study functional consequences of FANCI:FANCD2 monoubiquitination. We report that monoubiquitination does not promote any specific exogenous protein:protein interactions, but instead stabilizes FANCI:FANCD2 heterodimers on dsDNA. This clamping requires monoubiquitination of only the FANCD2 subunit. We further show that purified monoubiquitinated FANCI:FANCD2 forms filament-like arrays on long dsDNA using electron microscopy. Our results reveal how monoubiquitinated FANCI:FANCD2, defective in many cancer types and all cases of FA, is activated upon DNA binding.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Winnie Tan

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Sylvie van Twest

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew Leis

    Department of Biochemistry, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Rohan Bythell-Douglas

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Vincent J Murphy

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael Sharp

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1019-3729
  7. Michael W Parker

    Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3101-1138
  8. Wayne M Crismani

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0143-8293
  9. Andrew J Deans

    Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
    For correspondence
    adeans@svi.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5271-4422

Funding

National Health and Medical Research Council (GNT1123100 and GNT1181110)

  • Andrew J Deans

National Health and Medical Research Council (GNT1156343)

  • Wayne M Crismani

Fanconi Anemia Research Fund

  • Wayne M Crismani
  • Andrew J Deans

Victorian Government's OIS Program

  • Winnie Tan
  • Sylvie van Twest
  • Rohan Bythell-Douglas
  • Vincent J Murphy
  • Michael Sharp
  • Michael W Parker
  • Wayne M Crismani
  • Andrew J Deans

Maddie Riewoldt's Vision

  • Wayne M Crismani
  • Andrew J Deans

Victorian Cancer Agency

  • Andrew J Deans

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wolf-Dietrich Heyer, University of California, Davis, United States

Publication history

  1. Received: December 3, 2019
  2. Accepted: March 12, 2020
  3. Accepted Manuscript published: March 13, 2020 (version 1)
  4. Version of Record published: April 14, 2020 (version 2)

Copyright

© 2020, Tan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,300
    Page views
  • 324
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Michele Felletti et al.
    Research Article

    The ability to regulate DNA replication initiation in response to changing nutrient conditions is an important feature of most cell types. In bacteria, DNA replication is triggered by the initiator protein DnaA, which has long been suggested to respond to nutritional changes; nevertheless, the underlying mechanisms remain poorly understood. Here, we report a novel mechanism that adjusts DnaA synthesis in response to nutrient availability in Caulobacter crescentus. By performing a detailed biochemical and genetic analysis of the dnaA mRNA, we identified a sequence downstream of the dnaA start codon that inhibits DnaA translation elongation upon carbon exhaustion. Our data show that the corresponding peptide sequence, but not the mRNA secondary structure or the codon choice, is critical for this response, suggesting that specific amino acids in the growing DnaA nascent chain tune translational efficiency. Our study provides new insights into DnaA regulation and highlights the importance of translation elongation as a regulatory target. We propose that translation regulation by nascent chain sequences, like the one described, might constitute a general strategy for modulating the synthesis rate of specific proteins under changing conditions.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Benoit Roch et al.
    Research Article

    We developed a Xrcc4M61R separation of function mouse line to overcome the embryonic lethality of Xrcc4 deficient mice. XRCC4M61R protein does not interact with Xlf, thus obliterating XRCC4-Xlf filament formation while preserving the ability to stabilize DNA Ligase IV. X4M61R mice, which are DNA repair deficient, phenocopy the Nhej1-/- (known as Xlf -/-) setting with a minor impact on the development of the adaptive immune system. The core NHEJ DNA repair factor XRCC4 is therefore not mandatory for V(D)J recombination aside from its role in stabilizing DNA ligase IV. In contrast, Xrcc4M61R mice crossed on Paxx-/-, Nhej1-/-, or Atm-/- backgrounds are severely immunocompromised, owing to aborted V(D)J recombination as in Xlf-Paxx and Xlf-Atm double KO settings. Furthermore, massive apoptosis of post-mitotic neurons causes embryonic lethality of Xrcc4M61R -Nhej1-/- double mutants. These in vivo results reveal new functional interplays between XRCC4 and PAXX, ATM and Xlf in mouse development and provide new insights in the understanding of the clinical manifestations of human XRCC4 deficient condition, in particular its absence of immune deficiency.