A single-parasite transcriptional atlas of Toxoplasma gondii reveals novel control of antigen expression
Abstract
Toxoplasma gondii, a protozoan parasite, undergoes a complex and poorly understood developmental process that is critical for establishing a chronic infection in its intermediate hosts. Here, we applied single-cell RNA-sequencing (scRNA-seq) on >5,400 Toxoplasma in both tachyzoite and bradyzoite stages using three widely studied strains to construct a comprehensive atlas of cell-cycle and asexual development, revealing hidden states and transcriptional factors associated with each developmental stage. Analysis of SAG1-related sequence (SRS) antigenic repertoire reveals a highly heterogeneous, sporadic expression pattern unexplained by measurement noise, cell cycle, or asexual development. Furthermore, we identified AP2IX-1 as a transcription factor that controls the switching from the ubiquitous SAG1 to rare surface antigens not previously observed in tachyzoites. In addition, comparative analysis between Toxoplasma and Plasmodium scRNA-seq results reveals concerted expression of gene sets, despite fundamental differences in cell division. Lastly, we built an interactive data-browser for visualization of our atlas resource.
Data availability
Instructions to obtain processed data, preprocessing scripts, and analysis scripts are available on https://github.com/xuesoso/singleToxoplasmaSeq.Raw fastq files and processed data are deposited on SRA and GEO repository (GEO number: GSE145080)
-
Data from: A single-parasite transcriptional landscape of Toxoplasma gondii reveals novel control of antigen expressionDryad Digital Repository, 10.5061/dryad.kprr4xh17.
-
Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of toxoplasma gondiiNCBI Gene Expression Omnibus, GSE19092.
-
Transcriptomics of Toxoplasma gondii enteroepithelial stagesNCBI Gene Expression Omnibus, GSE108740.
Article and author information
Author details
Funding
Stanford University (Stanford Interdisciplinary Graduate Bio-X Fellowships)
- Yuan Xue
- Terence C Theisen
National Institutes of Health (F30 AI124589-03)
- Suchita Rastogi
National Institutes of Health (5T32AI007328-30)
- Abel Ferrel
Howard Hughes Medical Institute (Gilliams Fellowship for Advanced Study)
- Abel Ferrel
National Institutes of Health (RO1 AI21423)
- John C Boothroyd
National Institutes of Health (RO1 AI29529)
- John C Boothroyd
Chan Zuckerberg Biohub
- Stephen R Quake
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Xue et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,326
- views
-
- 680
- downloads
-
- 51
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.