A single-parasite transcriptional atlas of Toxoplasma gondii reveals novel control of antigen expression

  1. Yuan Xue
  2. Terence C Theisen
  3. Suchita Rastogi
  4. Abel Ferrel
  5. Stephen R Quake  Is a corresponding author
  6. John C Boothroyd  Is a corresponding author
  1. Stanford University, United States
  2. Stanford University School of Medicine, United States
  3. Chan Zuckerberg Biohub, United States

Abstract

Toxoplasma gondii, a protozoan parasite, undergoes a complex and poorly understood developmental process that is critical for establishing a chronic infection in its intermediate hosts. Here, we applied single-cell RNA-sequencing (scRNA-seq) on >5,400 Toxoplasma in both tachyzoite and bradyzoite stages using three widely studied strains to construct a comprehensive atlas of cell-cycle and asexual development, revealing hidden states and transcriptional factors associated with each developmental stage. Analysis of SAG1-related sequence (SRS) antigenic repertoire reveals a highly heterogeneous, sporadic expression pattern unexplained by measurement noise, cell cycle, or asexual development. Furthermore, we identified AP2IX-1 as a transcription factor that controls the switching from the ubiquitous SAG1 to rare surface antigens not previously observed in tachyzoites. In addition, comparative analysis between Toxoplasma and Plasmodium scRNA-seq results reveals concerted expression of gene sets, despite fundamental differences in cell division. Lastly, we built an interactive data-browser for visualization of our atlas resource.

Data availability

Instructions to obtain processed data, preprocessing scripts, and analysis scripts are available on https://github.com/xuesoso/singleToxoplasmaSeq.Raw fastq files and processed data are deposited on SRA and GEO repository (GEO number: GSE145080)

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Yuan Xue

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7846-4273
  2. Terence C Theisen

    Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Suchita Rastogi

    Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Abel Ferrel

    Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephen R Quake

    Chan Zuckerberg Biohub, San Francisco, United States
    For correspondence
    steve@quake-lab.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1613-0809
  6. John C Boothroyd

    Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
    For correspondence
    jboothr@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9719-745X

Funding

Stanford University (Stanford Interdisciplinary Graduate Bio-X Fellowships)

  • Yuan Xue
  • Terence C Theisen

National Institutes of Health (F30 AI124589-03)

  • Suchita Rastogi

National Institutes of Health (5T32AI007328-30)

  • Abel Ferrel

Howard Hughes Medical Institute (Gilliams Fellowship for Advanced Study)

  • Abel Ferrel

National Institutes of Health (RO1 AI21423)

  • John C Boothroyd

National Institutes of Health (RO1 AI29529)

  • John C Boothroyd

Chan Zuckerberg Biohub

  • Stephen R Quake

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Xue et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,834
    views
  • 651
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuan Xue
  2. Terence C Theisen
  3. Suchita Rastogi
  4. Abel Ferrel
  5. Stephen R Quake
  6. John C Boothroyd
(2020)
A single-parasite transcriptional atlas of Toxoplasma gondii reveals novel control of antigen expression
eLife 9:e54129.
https://doi.org/10.7554/eLife.54129

Share this article

https://doi.org/10.7554/eLife.54129

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Richard A Kahn, Harvinder Virk ... Skye Longworth
    Feature Article

    Antibodies are used in many areas of biomedical and clinical research, but many of these antibodies have not been adequately characterized, which casts doubt on the results reported in many scientific papers. This problem is compounded by a lack of suitable control experiments in many studies. In this article we review the history of the ‘antibody characterization crisis’, and we document efforts and initiatives to address the problem, notably for antibodies that target human proteins. We also present recommendations for a range of stakeholders – researchers, universities, journals, antibody vendors and repositories, scientific societies and funders – to increase the reproducibility of studies that rely on antibodies.

    1. Cancer Biology
    2. Cell Biology
    Francesca Butera, Julia E Sero ... Chris Bakal
    Research Article

    The canonical NF-κB transcription factor RELA is a master regulator of immune and stress responses and is upregulated in PDAC tumours. In this study, we characterised previously unexplored endogenous RELA-GFP dynamics in PDAC cell lines through live single cell imaging. Our observations revealed that TNFα stimulation induces rapid, sustained, and non-oscillatory nuclear translocation of RELA. Through Bayesian analysis of single cell datasets with variation in nuclear RELA, we predicted that RELA heterogeneity in PDAC cell lines is dependent on F-actin dynamics. RNA-seq analysis identified distinct clusters of RELA-regulated gene expression in PDAC cells, including TNFα-induced RELA upregulation of the actin regulators NUAK2 and ARHGAP31. Further, siRNA-mediated depletion of ARHGAP31 and NUAK2 altered TNFα-stimulated nuclear RELA dynamics in PDAC cells, establishing a novel negative feedback loop that regulates RELA activation by TNFα. Additionally, we characterised the NF-κB pathway in PDAC cells, identifying how NF-κB/IκB proteins genetically and physically interact with RELA in the absence or presence of TNFα. Taken together, we provide computational and experimental support for interdependence between the F-actin network and the NF-κB pathway with RELA translocation dynamics in PDAC.