Spatiotemporally precise optogenetic activation of sensory neurons in freely walking Drosophila

  1. Brian D DeAngelis
  2. Jacob A Zavatone-Veth
  3. Aneysis D Gonzalez-Suarez
  4. Damon A Clark  Is a corresponding author
  1. Yale University, United States
  2. Harvard University, United States

Abstract

Previous work has characterized how walking Drosophila coordinate the movements of individual limbs (DeAngelis, Zavatone-Veth, and Clark, 2019). To understand the circuit basis of this coordination, one must characterize how sensory feedback from each limb affects walking behavior. However, it has remained difficult to manipulate neural activity in individual limbs of freely moving animals. Here, we demonstrate a simple method for optogenetic stimulation with body side-, body segment-, and limb-specificity that does not require real-time tracking. Instead, we activate at random, precise locations in time and space and use post hoc analysis to determine behavioral responses to specific activations. Using this method, we have characterized limb coordination and walking behavior in response to transient activation of mechanosensitive bristle neurons and sweet-sensing chemoreceptor neurons. Our findings reveal that activating these neurons has opposite effects on turning, and that activations in different limbs and body regions produce distinct behaviors.

Data availability

Source data were deposited on Dryad: https://doi.org/10.5061/dryad.nzs7h44nk.Analysis code is available here: https://github.com/ClarkLabCode/FlyLimbOptoCode.

The following data sets were generated

Article and author information

Author details

  1. Brian D DeAngelis

    Interdepartmental Neuroscience Program, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9418-7619
  2. Jacob A Zavatone-Veth

    Department of Physics, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4060-1738
  3. Aneysis D Gonzalez-Suarez

    Interdepartmental Neuroscience Program, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Damon A Clark

    Department of Molecular, Cellular, Developmental Biology, Yale University, New Haven, United States
    For correspondence
    damon.clark@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8487-700X

Funding

National Institutes of Health (EY026555)

  • Brian D DeAngelis
  • Damon A Clark

National Institutes of Health (EY026878)

  • Brian D DeAngelis
  • Damon A Clark

Chicago Community Trust (Searle Scholar Award)

  • Damon A Clark

Alfred P. Sloan Foundation (Fellowship)

  • Damon A Clark

National Science Foundation (GRF)

  • Brian D DeAngelis

Smith Family Foundation (Scholar Award)

  • Brian D DeAngelis
  • Damon A Clark

National Science Foundation (IOS 1558103)

  • Jacob A Zavatone-Veth
  • Damon A Clark

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Version history

  1. Received: December 12, 2019
  2. Accepted: April 21, 2020
  3. Accepted Manuscript published: April 22, 2020 (version 1)
  4. Version of Record published: May 4, 2020 (version 2)

Copyright

© 2020, DeAngelis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,180
    views
  • 373
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian D DeAngelis
  2. Jacob A Zavatone-Veth
  3. Aneysis D Gonzalez-Suarez
  4. Damon A Clark
(2020)
Spatiotemporally precise optogenetic activation of sensory neurons in freely walking Drosophila
eLife 9:e54183.
https://doi.org/10.7554/eLife.54183

Share this article

https://doi.org/10.7554/eLife.54183

Further reading

    1. Neuroscience
    Emma Keppler, Susanna Molas
    Insight

    A social memory pathway connecting the ventral hippocampus, the lateral septum and the ventral tegmental area helps to regulate how mice react to unknown individuals.

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent stimulated dopamine release in male rats, as well as opposite effects of the a6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The a6-selective blocker, a-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this a6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of a6 nAChR and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at a6-containing nAChRs to drive inhibitory GABA tone on dopamine release.