Spatiotemporally precise optogenetic activation of sensory neurons in freely walking Drosophila
Abstract
Previous work has characterized how walking Drosophila coordinate the movements of individual limbs (DeAngelis, Zavatone-Veth, and Clark, 2019). To understand the circuit basis of this coordination, one must characterize how sensory feedback from each limb affects walking behavior. However, it has remained difficult to manipulate neural activity in individual limbs of freely moving animals. Here, we demonstrate a simple method for optogenetic stimulation with body side-, body segment-, and limb-specificity that does not require real-time tracking. Instead, we activate at random, precise locations in time and space and use post hoc analysis to determine behavioral responses to specific activations. Using this method, we have characterized limb coordination and walking behavior in response to transient activation of mechanosensitive bristle neurons and sweet-sensing chemoreceptor neurons. Our findings reveal that activating these neurons has opposite effects on turning, and that activations in different limbs and body regions produce distinct behaviors.
Data availability
Source data were deposited on Dryad: https://doi.org/10.5061/dryad.nzs7h44nk.Analysis code is available here: https://github.com/ClarkLabCode/FlyLimbOptoCode.
-
Data from: Spatiotemporally precise optogenetic activation of sensory neurons in freely walking <em>Drosophila</em>Dryad Digital Repository, 10.5061/dryad.nzs7h44nk.
Article and author information
Author details
Funding
National Institutes of Health (EY026555)
- Brian D DeAngelis
- Damon A Clark
National Institutes of Health (EY026878)
- Brian D DeAngelis
- Damon A Clark
Chicago Community Trust (Searle Scholar Award)
- Damon A Clark
Alfred P. Sloan Foundation (Fellowship)
- Damon A Clark
National Science Foundation (GRF)
- Brian D DeAngelis
Smith Family Foundation (Scholar Award)
- Brian D DeAngelis
- Damon A Clark
National Science Foundation (IOS 1558103)
- Jacob A Zavatone-Veth
- Damon A Clark
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Ronald L Calabrese, Emory University, United States
Version history
- Received: December 12, 2019
- Accepted: April 21, 2020
- Accepted Manuscript published: April 22, 2020 (version 1)
- Version of Record published: May 4, 2020 (version 2)
Copyright
© 2020, DeAngelis et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,017
- Page views
-
- 360
- Downloads
-
- 6
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Evolutionary Biology
- Neuroscience
The process of brain folding is thought to play an important role in the development and organisation of the cerebrum and the cerebellum. The study of cerebellar folding is challenging due to the small size and abundance of its folia. In consequence, little is known about its anatomical diversity and evolution. We constituted an open collection of histological data from 56 mammalian species and manually segmented the cerebrum and the cerebellum. We developed methods to measure the geometry of cerebellar folia and to estimate the thickness of the molecular layer. We used phylogenetic comparative methods to study the diversity and evolution of cerebellar folding and its relationship with the anatomy of the cerebrum. Our results show that the evolution of cerebellar and cerebral anatomy follows a stabilising selection process. We observed 2 groups of phenotypes changing concertedly through evolution: a group of 'diverse' phenotypes - varying over several orders of magnitude together with body size, and a group of 'stable' phenotypes varying over less than 1 order of magnitude across species. Our analyses confirmed the strong correlation between cerebral and cerebellar volumes across species, and showed in addition that large cerebella are disproportionately more folded than smaller ones. Compared with the extreme variations in cerebellar surface area, folial anatomy and molecular layer thickness varied only slightly, showing a much smaller increase in the larger cerebella. We discuss how these findings could provide new insights into the diversity and evolution of cerebellar folding, the mechanisms of cerebellar and cerebral folding, and their potential influence on the organisation of the brain across species.
-
- Neuroscience
Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila, four neurons called the interoceptive subesophageal zone neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell-type bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPCs), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion.