Spatiotemporally precise optogenetic activation of sensory neurons in freely walking Drosophila
Abstract
Previous work has characterized how walking Drosophila coordinate the movements of individual limbs (DeAngelis, Zavatone-Veth, and Clark, 2019). To understand the circuit basis of this coordination, one must characterize how sensory feedback from each limb affects walking behavior. However, it has remained difficult to manipulate neural activity in individual limbs of freely moving animals. Here, we demonstrate a simple method for optogenetic stimulation with body side-, body segment-, and limb-specificity that does not require real-time tracking. Instead, we activate at random, precise locations in time and space and use post hoc analysis to determine behavioral responses to specific activations. Using this method, we have characterized limb coordination and walking behavior in response to transient activation of mechanosensitive bristle neurons and sweet-sensing chemoreceptor neurons. Our findings reveal that activating these neurons has opposite effects on turning, and that activations in different limbs and body regions produce distinct behaviors.
Data availability
Source data were deposited on Dryad: https://doi.org/10.5061/dryad.nzs7h44nk.Analysis code is available here: https://github.com/ClarkLabCode/FlyLimbOptoCode.
-
Data from: Spatiotemporally precise optogenetic activation of sensory neurons in freely walking <em>Drosophila</em>Dryad Digital Repository, 10.5061/dryad.nzs7h44nk.
Article and author information
Author details
Funding
National Institutes of Health (EY026555)
- Brian D DeAngelis
- Damon A Clark
National Institutes of Health (EY026878)
- Brian D DeAngelis
- Damon A Clark
Chicago Community Trust (Searle Scholar Award)
- Damon A Clark
Alfred P. Sloan Foundation (Fellowship)
- Damon A Clark
National Science Foundation (GRF)
- Brian D DeAngelis
Smith Family Foundation (Scholar Award)
- Brian D DeAngelis
- Damon A Clark
National Science Foundation (IOS 1558103)
- Jacob A Zavatone-Veth
- Damon A Clark
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, DeAngelis et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,367
- views
-
- 390
- downloads
-
- 10
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.
-
- Neuroscience
Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.