Underground isoleucine biosynthesis pathways in E. coli

  1. Charles AR Cotton
  2. Iria Bernhardsgrütter
  3. Hai He
  4. Simon Burgener
  5. Luca Schulz
  6. Nicole Paczia
  7. Beau Dronsella
  8. Alexander Erban
  9. Stepan Toman
  10. Marian Dempfle
  11. Alberto De Maria
  12. Joachim Kopka
  13. Steffen N Lindner
  14. Tobias J Erb
  15. Arren Bar-Even  Is a corresponding author
  1. Max Planck Institute of Molecular Plant Physiology, Germany
  2. Max Planck Institute of Terrestrial Microbiology, Germany
  3. Max Planck Insitute of Molecular Plant Physiology, Germany

Abstract

The promiscuous activities of enzymes provide fertile ground for the evolution of new metabolic pathways. Here, we systematically explore the ability of E. coli to harness underground metabolism to compensate for the deletion of an essential biosynthetic pathway. By deleting all threonine deaminases, we generated a strain in which isoleucine biosynthesis was interrupted at the level of 2-ketobutyrate. Incubation of this strain under aerobic conditions resulted in the emergence of a novel 2-ketobutyrate biosynthesis pathway based upon the promiscuous cleavage of O-succinyl-L-homoserine by cystathionine γ-synthase (MetB). Under anaerobic conditions, pyruvate formate-lyase enabled 2-ketobutyrate biosynthesis from propionyl-CoA and formate. Surprisingly, we found this anaerobic route to provide a substantial fraction of isoleucine in a WT strain, when propionate is available in the medium. This study demonstrates the selective advantage underground metabolism offers, providing metabolic redundancy and flexibility which allow for the best use of environmental carbon sources.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2 and 7 as well as for the metabolomic analysis.

Article and author information

Author details

  1. Charles AR Cotton

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Iria Bernhardsgrütter

    Max Planck Institute of Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5019-8188
  3. Hai He

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1223-2813
  4. Simon Burgener

    Max Planck Institute of Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Luca Schulz

    Max Planck Institute of Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Nicole Paczia

    Max Planck Institute of Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Beau Dronsella

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Alexander Erban

    Dept. III, Max Planck Insitute of Molecular Plant Physiology, Potsdam-Golm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Stepan Toman

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Marian Dempfle

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Alberto De Maria

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Joachim Kopka

    Dept. III, Max Planck Insitute of Molecular Plant Physiology, Potsdam-Golm, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9675-4883
  13. Steffen N Lindner

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3226-3043
  14. Tobias J Erb

    Max Planck Institute of Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Arren Bar-Even

    Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
    For correspondence
    Bar-Even@mpimp-golm.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1039-4328

Funding

Max Planck Society

  • Arren Bar-Even

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Cotton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,991
    views
  • 496
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Charles AR Cotton
  2. Iria Bernhardsgrütter
  3. Hai He
  4. Simon Burgener
  5. Luca Schulz
  6. Nicole Paczia
  7. Beau Dronsella
  8. Alexander Erban
  9. Stepan Toman
  10. Marian Dempfle
  11. Alberto De Maria
  12. Joachim Kopka
  13. Steffen N Lindner
  14. Tobias J Erb
  15. Arren Bar-Even
(2020)
Underground isoleucine biosynthesis pathways in E. coli
eLife 9:e54207.
https://doi.org/10.7554/eLife.54207

Share this article

https://doi.org/10.7554/eLife.54207

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.