Topological constraints in early multicellularity favor reproductive division of labor

Abstract

Reproductive division of labor (e.g., germ-soma specialization) is a hallmark of the evolution of multicellularity, signifying the emergence of a new type of individual and facilitating the evolution of increased organismal complexity. A large body of work from evolutionary biology, economics, and ecology has shown that specialization is beneficial when further division of labor produces an accelerating increase in absolute productivity (i.e., productivity is a convex function of specialization). Here we show that reproductive specialization is qualitatively different from classical models of resource sharing, and can evolve even when the benefits of specialization are saturating (i.e., productivity is a concave function of specialization). Through analytical theory and evolutionary individual-based simulations, we demonstrate that reproductive specialization is strongly favored in sparse networks of cellular interactions that reflect the morphology of early, simple multicellular organisms, highlighting the importance of restricted social interactions in the evolution of reproductive specialization.

Data availability

All evolutionary simulations and other computations associated with this work are available at github.com/dyanni3/topologicalConstraintsSpecialization; all parameters used in the current study are specified so all simulations can be repeated exactly.

Article and author information

Author details

  1. David Yanni

    School of Physics, Georgia Institute of Technology, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Shane Jacobeen

    School of Physics, Georgia Institute of Technology, Atlanta, United States
    For correspondence
    shane.jacobeen@gatech.edu
    Competing interests
    The authors declare that no competing interests exist.
  3. Pedro Márquez-Zacarías

    School of Biological Sciences, Georgia Institute of Technology, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Joshua S Weitz

    School of Physics, Georgia Institute of Technology, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. William C Ratcliff

    School of Biological Sciences, Georgia Institute of Technology, Atlanta, United States
    For correspondence
    william.ratcliff@gatech.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Peter J Yunker

    School of Physics, Georgia Institute of Technology, Atlanta, United States
    For correspondence
    peter.yunker@gatech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8471-4171

Funding

National Science Foundation (IOS-1656549)

  • William C Ratcliff
  • Peter J Yunker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Yanni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,312
    views
  • 437
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Yanni
  2. Shane Jacobeen
  3. Pedro Márquez-Zacarías
  4. Joshua S Weitz
  5. William C Ratcliff
  6. Peter J Yunker
(2020)
Topological constraints in early multicellularity favor reproductive division of labor
eLife 9:e54348.
https://doi.org/10.7554/eLife.54348

Share this article

https://doi.org/10.7554/eLife.54348

Further reading

    1. Evolutionary Biology
    Mattias Siljestam, Claus Rueffler
    Research Article Updated

    The majority of highly polymorphic genes are related to immune functions and with over 100 alleles within a population, genes of the major histocompatibility complex (MHC) are the most polymorphic loci in vertebrates. How such extraordinary polymorphism arose and is maintained is controversial. One possibility is heterozygote advantage (HA), which can in principle maintain any number of alleles, but biologically explicit models based on this mechanism have so far failed to reliably predict the coexistence of significantly more than 10 alleles. We here present an eco-evolutionary model showing that evolution can result in the emergence and maintenance of more than 100 alleles under HA if the following two assumptions are fulfilled: first, pathogens are lethal in the absence of an appropriate immune defence; second, the effect of pathogens depends on host condition, with hosts in poorer condition being affected more strongly. Thus, our results show that HA can be a more potent force in explaining the extraordinary polymorphism found at MHC loci than currently recognised.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Pierre Barrat-Charlaix, Richard A Neher
    Research Article

    As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host’s immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time. If variant growth dynamics and reshaping of host-immunity operate on comparable time scales, viral adaptation is determined by eco-evolutionary interactions that are not captured by models of rapid evolution in a fixed environment. Here, we use a Susceptible/Infected model to describe the interaction between an evolving viral population in a dynamic but immunologically diverse host population. We show that depending on strain cross-immunity, heterogeneity of the host population, and durability of immune responses, escape variants initially grow exponentially, but lose their growth advantage before reaching high frequencies. Their subsequent dynamics follows an anomalous random walk determined by future escape variants and results in variant trajectories that are unpredictable. This model can explain the apparent contradiction between the clearly adaptive nature of antigenic evolution and the quasi-neutral dynamics of high-frequency variants observed for influenza viruses.