1. Evolutionary Biology
  2. Genetics and Genomics
Download icon

Predicting geographic location from genetic variation with deep neural networks

  1. CJ Battey  Is a corresponding author
  2. Peter L Ralph
  3. Andrew D Kern
  1. University of Oregon, United States
Tools and Resources
  • Cited 1
  • Views 2,686
  • Annotations
Cite this article as: eLife 2020;9:e54507 doi: 10.7554/eLife.54507

Abstract

Most organisms are more closely related to nearby than distant members of their species, creating spatial autocorrelations in genetic data. This allows us to predict the location of a genetic sample by comparing it to a set of samples of known geographic origin. Here we describe a deep learning method, which we call Locator, to accomplish this task faster and more accurately than existing approaches. In simulations, Locator infers sample location to within 4.1 generations of dispersal and runs at least an order of magnitude faster than a recent model-based approach. We leverage Locator's computational efficiency to predict locations separately in windows across the genome, which allows us to both quantify uncertainty and describe the mosaic ancestry and patterns of geographic mixing that characterize many populations. Applied to whole-genome sequence data from Plasmodium parasites, Anopheles mosquitoes, and global human populations, this approach yields median test errors of 16.9km, 5.7km, and 85km, respectively.

Article and author information

Author details

  1. CJ Battey

    Institute of Ecology and Evolution, University of Oregon, Eugene, United States
    For correspondence
    cjbattey@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9958-4282
  2. Peter L Ralph

    Institute of Ecology and Evolution, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew D Kern

    Institute of Ecology and Evolution, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4381-4680

Funding

National Institutes of Health (R01GM117241)

  • CJ Battey
  • Andrew D Kern

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Magnus Nordborg, Austrian Academy of Sciences, Austria

Publication history

  1. Received: December 17, 2019
  2. Accepted: June 3, 2020
  3. Accepted Manuscript published: June 8, 2020 (version 1)
  4. Version of Record published: June 29, 2020 (version 2)

Copyright

© 2020, Battey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,686
    Page views
  • 265
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Evolutionary Biology
    Eugenio Mancera et al.
    Research Article

    We examine how a complex transcription network composed of seven 'master' regulators and hundreds of target genes evolved over a span of approximately 70 million years. The network controls biofilm formation in several Candida species, a group of fungi that are present in humans both as constituents of the microbiota and as opportunistic pathogens. Using a variety of approaches, we observed two major types of changes that have occurred in the biofilm network since the four extant species we examined last shared a common ancestor. Master regulator 'substitutions' occurred over relatively long evolutionary times, resulting in different species having overlapping, but different sets of master regulators of biofilm formation. Second, massive changes in the connections between the master regulators and their target genes occurred over much shorter timescales. We believe this analysis is the first detailed, empirical description of how a complex transcription network has evolved.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Célia Souque et al.
    Research Article Updated

    Mobile integrons are widespread genetic platforms that allow bacteria to modulate the expression of antibiotic resistance cassettes by shuffling their position from a common promoter. Antibiotic stress induces the expression of an integrase that excises and integrates cassettes, and this unique recombination and expression system is thought to allow bacteria to ‘evolve on demand’ in response to antibiotic pressure. To test this hypothesis, we inserted a custom three-cassette integron into Pseudomonas aeruginosa and used experimental evolution to measure the impact of integrase activity on adaptation to gentamicin. Crucially, integrase activity accelerated evolution by increasing the expression of a gentamicin resistance cassette through duplications and by eliminating redundant cassettes. Importantly, we found no evidence of deleterious off-target effects of integrase activity. In summary, integrons accelerate resistance evolution by rapidly generating combinatorial variation in cassette composition while maintaining genomic integrity.