Predicting geographic location from genetic variation with deep neural networks

  1. CJ Battey  Is a corresponding author
  2. Peter L Ralph
  3. Andrew D Kern
  1. University of Oregon, United States

Abstract

Most organisms are more closely related to nearby than distant members of their species, creating spatial autocorrelations in genetic data. This allows us to predict the location of a genetic sample by comparing it to a set of samples of known geographic origin. Here we describe a deep learning method, which we call Locator, to accomplish this task faster and more accurately than existing approaches. In simulations, Locator infers sample location to within 4.1 generations of dispersal and runs at least an order of magnitude faster than a recent model-based approach. We leverage Locator's computational efficiency to predict locations separately in windows across the genome, which allows us to both quantify uncertainty and describe the mosaic ancestry and patterns of geographic mixing that characterize many populations. Applied to whole-genome sequence data from Plasmodium parasites, Anopheles mosquitoes, and global human populations, this approach yields median test errors of 16.9km, 5.7km, and 85km, respectively.

Data availability

Locator is implemented as a command-line program written in Python: www.github.com/kern-lab/locator. SNP calls for the Anopheles dataset are available at https://www.malariagen.net/data/ag1000g-phase1-ar3, for P. falciparum at https://www.malariagen.net/resource/26,and for the HGDP at ftp://ngs.sanger.ac.uk/production/hgdp. Code to run continuous-space simulations can be found at https://github.com/kern-lab/spaceness/blob/master/slim_recipes/spaceness.slim. This publication uses data from the MalariaGEN Plasmodium falciparum Community Project as described in Pearson et al. (2019). Statistical analyses and many plots were produced in R (R Core Team, 2018).

The following previously published data sets were used

Article and author information

Author details

  1. CJ Battey

    Institute of Ecology and Evolution, University of Oregon, Eugene, United States
    For correspondence
    cjbattey@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9958-4282
  2. Peter L Ralph

    Institute of Ecology and Evolution, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew D Kern

    Institute of Ecology and Evolution, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4381-4680

Funding

National Institutes of Health (R01GM117241)

  • CJ Battey
  • Andrew D Kern

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Magnus Nordborg, Austrian Academy of Sciences, Austria

Version history

  1. Received: December 17, 2019
  2. Accepted: June 3, 2020
  3. Accepted Manuscript published: June 8, 2020 (version 1)
  4. Version of Record published: June 29, 2020 (version 2)

Copyright

© 2020, Battey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,606
    views
  • 758
    downloads
  • 65
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. CJ Battey
  2. Peter L Ralph
  3. Andrew D Kern
(2020)
Predicting geographic location from genetic variation with deep neural networks
eLife 9:e54507.
https://doi.org/10.7554/eLife.54507

Share this article

https://doi.org/10.7554/eLife.54507

Further reading

    1. Evolutionary Biology
    Isabella Tomanek
    Insight

    Laboratory experiments on a fluorescent protein in E. coli reveal how duplicate genes are rapidly inactivated by mutations during evolution.

    1. Evolutionary Biology
    Maryline Blin, Louis Valay ... Sylvie Rétaux
    Research Article

    Animals are adapted to their natural habitats and lifestyles. Their brains perceive the external world via their sensory systems, compute information together with that of internal states and autonomous activity, and generate appropriate behavioral outputs. However, how do these processes evolve across evolution? Here, focusing on the sense of olfaction, we have studied the evolution in olfactory sensitivity, preferences, and behavioral responses to six different food-related amino acid odors in the two eco-morphs of the fish Astyanax mexicanus. To this end, we have developed a high-throughput behavioral setup and pipeline of quantitative and qualitative behavior analysis, and we have tested 489 six-week-old Astyanax larvae. The blind, dark-adapted morphs of the species showed markedly distinct basal swimming patterns and behavioral responses to odors, higher olfactory sensitivity, and a strong preference for alanine, as compared to their river-dwelling eyed conspecifics. In addition, we discovered that fish have an individual ‘swimming personality’, and that this personality influences their capability to respond efficiently to odors and find the source. Importantly, the personality traits that favored significant responses to odors were different in surface fish and cavefish. Moreover, the responses displayed by second-generation cave × surface F2 hybrids suggested that olfactory-driven behavior and olfactory sensitivity is a quantitative genetic trait. Our findings show that olfactory processing has rapidly evolved in cavefish at several levels: detection threshold, odor preference, and foraging behavior strategy. Cavefish is therefore an outstanding model to understand the genetic, molecular, and neurophysiological basis of sensory specialization in response to environmental change.