1. Stem Cells and Regenerative Medicine
Download icon

Increase of circulating IGFBP-4 following genotoxic stress and its implication for senescence

  1. Nicola Alessio
  2. Tiziana Squillaro
  3. Giovanni Di Bernardo
  4. Giovanni Galano
  5. Roberto De Rosa
  6. Mariarosa AB Melone
  7. Gianfranco Peluso
  8. Umberto Galderisi  Is a corresponding author
  1. Luigi Vanvitelli Campania University, Italy
  2. ASL Napoli 1, Italy
  3. National Research Council (CNR), Italy
Research Article
  • Cited 6
  • Views 718
  • Annotations
Cite this article as: eLife 2020;9:e54523 doi: 10.7554/eLife.54523

Abstract

Senescent cells secrete several molecules, collectively named senescence-associated secretory phenotype (SASP). In the SASP of cells that became senescent following several in vitro chemical and physical stress, we identified the IGFBP-4 protein that can be considered a general stress mediator. This factor appeared to play a key role in senescence-paracrine signaling. We provided evidences showing that genotoxic injury, such as low dose irradiation, may promote an IGFBP-4 release in bloodstream both in mice irradiated with 100 mGy X-ray and in human subjects that received Computer Tomography. Increased level of circulating IGFBP-4 may be responsible of pro-aging effect. We found a significant increase of senescent cells in the lungs, heart, and kidneys of mice that were intraperitoneally injected with IGFBP-4 twice a week for two months. We then analyzed how genotoxic stressors may promote the release of IGFBP-4 and the molecular pathways associated with the induction of senescence by this protein.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Nicola Alessio

    Experimental Medicine, Luigi Vanvitelli Campania University, Napoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Tiziana Squillaro

    Experimental Medicine, Luigi Vanvitelli Campania University, Napoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Giovanni Di Bernardo

    Experimental Medicine, Luigi Vanvitelli Campania University, Napoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Giovanni Galano

    Centro P.S.I. Napoli Est - Barra, Naples, Italy, ASL Napoli 1, Napoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Roberto De Rosa

    Centro P.S.I. Napoli Est - Barra, Naples, Italy, ASL Napoli 1, Napoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Mariarosa AB Melone

    Medical, Surgical, Neurological, Metabolic Sciences, and Aging, Luigi Vanvitelli Campania University, Napoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Gianfranco Peluso

    Institute of Agri-Environmental Biology and Forestry (IBAF), National Research Council (CNR), Napoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Umberto Galderisi

    Experimental Medicine, Luigi Vanvitelli Campania University, Napoli, Italy
    For correspondence
    umberto.galderisi@unicampania.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0909-7403

Funding

Regione Campania (CUP B23D18000250007)

  • Umberto Galderisi

Regione Campania (CUP B23D18000250007)

  • Gianfranco Peluso

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The animals were handled in compliance with the protocols that were approved by the Animal Care and Use Committee of Luigi Vanvitelli Campania University. Italian Ministry of Health ethical approval n. 67/2012 A

Human subjects: Bone marrow aspirate samples were obtained from healthy donors (age 10-18 years) after informed consent. Campania Region Ethical Committee approval n. 317/2016 PR

Reviewing Editor

  1. Jean-Pierre Michel, University of Geneva, Switzerland

Publication history

  1. Received: December 17, 2019
  2. Accepted: March 29, 2020
  3. Accepted Manuscript published: March 30, 2020 (version 1)
  4. Version of Record published: April 6, 2020 (version 2)

Copyright

© 2020, Alessio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 718
    Page views
  • 103
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Anirban Roy et al.
    Research Article Updated

    Skeletal muscle regeneration is regulated by coordinated activation of multiple signaling pathways. The unfolded protein response (UPR) is a major mechanism that detects and alleviates protein-folding stresses in the endoplasmic reticulum. However, the role of individual arms of the UPR in skeletal muscle regeneration remain less understood. In the present study, we demonstrate that IRE1α (also known as ERN1) and its downstream target, XBP1, are activated in skeletal muscle of mice upon injury. Myofiber-specific ablation of IRE1α or XBP1 in mice diminishes skeletal muscle regeneration that is accompanied with reduced number of satellite cells. Ex vivo cultures of myofiber explants demonstrate that ablation of IRE1α reduces the proliferative capacity of myofiber-associated satellite cells. Myofiber-specific ablation of IRE1α dampens Notch signaling and canonical NF-κB pathway in skeletal muscle of adult mice. Finally, targeted ablation of IRE1α also reduces Notch signaling, abundance of satellite cells, and skeletal muscle regeneration in the mdx mice, a model of Duchenne muscular dystrophy. Collectively, our experiments suggest that the IRE1α-mediated signaling promotes muscle regeneration through augmenting the proliferation of satellite cells in a cell non-autonomous manner.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Hourinaz Behesti et al.
    Research Article

    Brain development is regulated by conserved transcriptional programs across species, but little is known about divergent mechanisms that create species-specific characteristics. Among brain regions, human cerebellar histogenesis differs in complexity compared with non-human primates and rodents, making it important to develop methods to generate human cerebellar neurons that closely resemble those in the developing human cerebellum. We report a rapid protocol for the derivation of the human ATOH1 lineage, the precursor of excitatory cerebellar neurons, from human pluripotent stem cells (hPSC). Upon transplantation into juvenile mice, hPSC-derived cerebellar granule cells migrated along glial fibers and integrated into the cerebellar cortex. By Translational Ribosome Affinity Purification-seq, we identified an unexpected temporal shift in the expression of RBFOX3 (NeuN) and NEUROD1, which are classically associated with differentiated neurons, in the human outer external granule layer. This molecular divergence may enable the protracted development of the human cerebellum compared to mice.