Ca2+ entry through NaV channels generates submillisecond axonal Ca2+ signaling

  1. Naomi A K Hanemaaijer
  2. Marko A Popovic
  3. Xante Wilders
  4. Sara Grasman
  5. Oriol Pavón Arocas
  6. Maarten H P Kole  Is a corresponding author
  1. Netherlands Institute for Neuroscience, Netherlands
  2. Netherlands Institute of Neuroscience, Netherlands

Abstract

Calcium ions (Ca2+) are essential for many cellular signaling mechanisms and enter the cytosol mostly through voltage-gated calcium channels. Here, using high-speed Ca2+ imaging up to 20 kHz in the rat layer 5 pyramidal neuron axon we found that activity-dependent intracellular calcium concentration ([Ca2+]i) in the axonal initial segment was only partially dependent on voltage-gated calcium channels. Instead, [Ca2+]i changes were sensitive to the specific voltage-gated sodium (NaV) channel blocker tetrodotoxin. Consistent with the conjecture that Ca2+ enters through the NaV channel pore, the optically resolved ICa in the axon initial segment overlapped with the activation kinetics of NaV channels and heterologous expression of NaV1.2 in HEK-293 cells revealed a tetrodotoxin-sensitive [Ca2+]i rise. Finally, computational simulations predicted that axonal [Ca2+]i transients reflect a 0.4% Ca2+ conductivity of NaV channels. The findings indicate that Ca2+ permeation through NaV channels provides a submillisecond rapid entry route in NaV-enriched domains of mammalian axons.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1 to 7 and Table 1 .

Article and author information

Author details

  1. Naomi A K Hanemaaijer

    Axonal Signalling, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0329-5129
  2. Marko A Popovic

    Axonal Signalling, Netherlands Institute of Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Xante Wilders

    Axonal Signalling, Netherlands Institute of Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Sara Grasman

    Axonal Signalling, Netherlands Institute of Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Oriol Pavón Arocas

    Axonal Signalling, Netherlands Institute of Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5822-8858
  6. Maarten H P Kole

    Axonal Signalling, Netherlands Institute of Neuroscience, Amsterdam, Netherlands
    For correspondence
    m.kole@nin.knaw.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3883-5682

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (865.17.003)

  • Maarten H P Kole

Stichting voor Fundamenteel Onderzoek der Materie (16NEPH02)

  • Maarten H P Kole

National Multiple Sclerosis Society (RG 4924A1/1)

  • Maarten H P Kole

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed in compliance with the European Communities Council Directive 2010/63/EU effective from 1 January 2013. They were evaluated and approved by the national CCD authority (license AVD8010020172426) and by the KNAW animal welfare and ethical guidelines and protocols (DEC NIN 14.49, DEC NIN 12.13, IvD NIN 17.21.01 and 17.21.03).

Human subjects: Written informed consent was obtained from patients and all procedures on human tissue were performed with the approval of the Medical Ethical Committee of the Amsterdam UMC, location VuMC and in accordance with Dutch license procedures and the Declaration of Helsinki. All data were anonymized.

Copyright

© 2020, Hanemaaijer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,524
    views
  • 725
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Naomi A K Hanemaaijer
  2. Marko A Popovic
  3. Xante Wilders
  4. Sara Grasman
  5. Oriol Pavón Arocas
  6. Maarten H P Kole
(2020)
Ca2+ entry through NaV channels generates submillisecond axonal Ca2+ signaling
eLife 9:e54566.
https://doi.org/10.7554/eLife.54566

Share this article

https://doi.org/10.7554/eLife.54566

Further reading

    1. Neuroscience
    Lenia Amaral, Xiaosha Wang ... Ella Striem-Amit
    Research Article

    Research on brain plasticity, particularly in the context of deafness, consistently emphasizes the reorganization of the auditory cortex. But to what extent do all individuals with deafness show the same level of reorganization? To address this question, we examined the individual differences in functional connectivity (FC) from the deprived auditory cortex. Our findings demonstrate remarkable differentiation between individuals deriving from the absence of shared auditory experiences, resulting in heightened FC variability among deaf individuals, compared to more consistent FC in the hearing group. Notably, connectivity to language regions becomes more diverse across individuals with deafness. This does not stem from delayed language acquisition; it is found in deaf native signers, who are exposed to natural language since birth. However, comparing FC diversity between deaf native signers and deaf delayed signers, who were deprived of language in early development, we show that language experience also impacts individual differences, although to a more moderate extent. Overall, our research points out the intricate interplay between brain plasticity and individual differences, shedding light on the diverse ways reorganization manifests among individuals. It joins findings of increased connectivity diversity in blindness and highlights the importance of considering individual differences in personalized rehabilitation for sensory loss.

    1. Computational and Systems Biology
    2. Neuroscience
    Gabriel Loewinger, Erjia Cui ... Francisco Pereira
    Tools and Resources

    Fiber photometry has become a popular technique to measure neural activity in vivo, but common analysis strategies can reduce the detection of effects because they condense within-trial signals into summary measures, and discard trial-level information by averaging across-trials. We propose a novel photometry statistical framework based on functional linear mixed modeling, which enables hypothesis testing of variable effects at every trial time-point, and uses trial-level signals without averaging. This makes it possible to compare the timing and magnitude of signals across conditions while accounting for between-animal differences. Our framework produces a series of plots that illustrate covariate effect estimates and statistical significance at each trial time-point. By exploiting signal autocorrelation, our methodology yields joint 95% confidence intervals that account for inspecting effects across the entire trial and improve the detection of event-related signal changes over common multiple comparisons correction strategies. We reanalyze data from a recent study proposing a theory for the role of mesolimbic dopamine in reward learning, and show the capability of our framework to reveal significant effects obscured by standard analysis approaches. For example, our method identifies two dopamine components with distinct temporal dynamics in response to reward delivery. In simulation experiments, our methodology yields improved statistical power over common analysis approaches. Finally, we provide an open-source package and analysis guide for applying our framework.