Efficient recognition of facial expressions does not require motor simulation

  1. Gilles Vannuscorps  Is a corresponding author
  2. Michael Andres
  3. Alfonso Caramazza
  1. Université catholique de Louvain, Belgium
  2. Harvard University, United States

Abstract

What mechanisms underlie facial expression recognition? A popular hypothesis holds that efficient facial expression recognition cannot be achieved by visual analysis alone but additionally requires a mechanism of motor simulation — an unconscious, covert imitation of the observed facial postures and movements. Here, we first discuss why this hypothesis does not necessarily follow from extant empirical evidence. Next, we report experimental evidence against the central premise of this view: we demonstrate that individuals can achieve normotypical efficient facial expression recognition despite a congenital absence of relevant facial motor representations and, therefore, unaided by motor simulation. This underscores the need to reconsider the role of motor simulation in facial expression recognition.

Data availability

Data and stimulus materials are publicly available and can be accessed on the Open Science Framework platform (https://osf.io/8t4fv/?view_only=85c15cafe5d94bb6a5cff2f09a6ef56d)

The following data sets were generated

Article and author information

Author details

  1. Gilles Vannuscorps

    Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
    For correspondence
    gilles.vannuscorps@uclouvain.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5686-7349
  2. Michael Andres

    Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Alfonso Caramazza

    Department of Psychology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Harvard University's Mind, Brain and Behavior Interfaculty Initiative

  • Alfonso Caramazza

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the local Ethical committee at UCLouvain (Registration # B403201629166). Written informed consents were obtained from all participants prior to the study, and after the nature and possible consequences of the studies were explained.

Copyright

© 2020, Vannuscorps et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,611
    views
  • 267
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gilles Vannuscorps
  2. Michael Andres
  3. Alfonso Caramazza
(2020)
Efficient recognition of facial expressions does not require motor simulation
eLife 9:e54687.
https://doi.org/10.7554/eLife.54687

Share this article

https://doi.org/10.7554/eLife.54687

Further reading

    1. Neuroscience
    Hannah R Martin, Anna Lysakowski, Ruth Anne Eatock
    Research Article

    In amniotes, head motions and tilt are detected by two types of vestibular hair cells (HCs) with strikingly different morphology and physiology. Mature type I HCs express a large and very unusual potassium conductance, gK,L, which activates negative to resting potential, confers very negative resting potentials and low input resistances, and enhances an unusual non-quantal transmission from type I cells onto their calyceal afferent terminals. Following clues pointing to KV1.8 (Kcna10) in the Shaker K channel family as a candidate gK,L subunit, we compared whole-cell voltage-dependent currents from utricular HCs of KV1.8-null mice and littermate controls. We found that KV1.8 is necessary not just for gK,L but also for fast-inactivating and delayed rectifier currents in type II HCs, which activate positive to resting potential. The distinct properties of the three KV1.8-dependent conductances may reflect different mixing with other KV subunits that are reported to be differentially expressed in type I and II HCs. In KV1.8-null HCs of both types, residual outwardly rectifying conductances include KV7 (Knq) channels. Current clamp records show that in both HC types, KV1.8-dependent conductances increase the speed and damping of voltage responses. Features that speed up vestibular receptor potentials and non-quantal afferent transmission may have helped stabilize locomotion as tetrapods moved from water to land.

    1. Neuroscience
    Jessica Royer, Valeria Kebets ... Boris C Bernhardt
    Research Article

    Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology (p) factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures. Connectivity signatures associated with the p factor and neurodevelopmental dimensions followed the sensory-to-transmodal axis of cortical organization, which is related to the emergence of complex cognition and risk for psychopathology. Results were consistent in two separate data subsamples and robust to variations in analytical parameters. Although model parameters yielded statistically significant brain-behavior associations in unseen data, generalizability of the model was rather limited for all three latent components (r change from within- to out-of-sample statistics: LC1within=0.36, LC1out=0.03; LC2within=0.34, LC2out=0.05; LC3within=0.35, LC3out=0.07). Our findings help in better understanding biological mechanisms underpinning dimensions of psychopathology, and could provide brain-based vulnerability markers.