Efficient recognition of facial expressions does not require motor simulation

  1. Gilles Vannuscorps  Is a corresponding author
  2. Michael Andres
  3. Alfonso Caramazza
  1. Université catholique de Louvain, Belgium
  2. Harvard University, United States

Abstract

What mechanisms underlie facial expression recognition? A popular hypothesis holds that efficient facial expression recognition cannot be achieved by visual analysis alone but additionally requires a mechanism of motor simulation — an unconscious, covert imitation of the observed facial postures and movements. Here, we first discuss why this hypothesis does not necessarily follow from extant empirical evidence. Next, we report experimental evidence against the central premise of this view: we demonstrate that individuals can achieve normotypical efficient facial expression recognition despite a congenital absence of relevant facial motor representations and, therefore, unaided by motor simulation. This underscores the need to reconsider the role of motor simulation in facial expression recognition.

Data availability

Data and stimulus materials are publicly available and can be accessed on the Open Science Framework platform (https://osf.io/8t4fv/?view_only=85c15cafe5d94bb6a5cff2f09a6ef56d)

The following data sets were generated

Article and author information

Author details

  1. Gilles Vannuscorps

    Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
    For correspondence
    gilles.vannuscorps@uclouvain.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5686-7349
  2. Michael Andres

    Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Alfonso Caramazza

    Department of Psychology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Harvard University's Mind, Brain and Behavior Interfaculty Initiative

  • Alfonso Caramazza

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard B Ivry, University of California, Berkeley, United States

Ethics

Human subjects: The study was approved by the local Ethical committee at UCLouvain (Registration # B403201629166). Written informed consents were obtained from all participants prior to the study, and after the nature and possible consequences of the studies were explained.

Version history

  1. Received: December 22, 2019
  2. Accepted: May 3, 2020
  3. Accepted Manuscript published: May 4, 2020 (version 1)
  4. Version of Record published: May 12, 2020 (version 2)

Copyright

© 2020, Vannuscorps et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,558
    views
  • 257
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gilles Vannuscorps
  2. Michael Andres
  3. Alfonso Caramazza
(2020)
Efficient recognition of facial expressions does not require motor simulation
eLife 9:e54687.
https://doi.org/10.7554/eLife.54687

Share this article

https://doi.org/10.7554/eLife.54687

Further reading

    1. Neuroscience
    Sanggeon Park, Yeowool Huh ... Jeiwon Cho
    Research Article

    The brain’s ability to appraise threats and execute appropriate defensive responses is essential for survival in a dynamic environment. Humans studies have implicated the anterior insular cortex (aIC) in subjective fear regulation and its abnormal activity in fear/anxiety disorders. However, the complex aIC connectivity patterns involved in regulating fear remain under investigated. To address this, we recorded single units in the aIC of freely moving male mice that had previously undergone auditory fear conditioning, assessed the effect of optogenetically activating specific aIC output structures in fear, and examined the organization of aIC neurons projecting to the specific structures with retrograde tracing. Single-unit recordings revealed that a balanced number of aIC pyramidal neurons’ activity either positively or negatively correlated with a conditioned tone-induced freezing (fear) response. Optogenetic manipulations of aIC pyramidal neuronal activity during conditioned tone presentation altered the expression of conditioned freezing. Neural tracing showed that non-overlapping populations of aIC neurons project to the amygdala or the medial thalamus, and the pathway bidirectionally modulated conditioned fear. Specifically, optogenetic stimulation of the aIC-amygdala pathway increased conditioned freezing, while optogenetic stimulation of the aIC-medial thalamus pathway decreased it. Our findings suggest that the balance of freezing-excited and freezing-inhibited neuronal activity in the aIC and the distinct efferent circuits interact collectively to modulate fear behavior.

    1. Neuroscience
    Jonathan S Tsay, Hyosub E Kim ... Richard B Ivry
    Review Article

    Motor learning is often viewed as a unitary process that operates outside of conscious awareness. This perspective has led to the development of sophisticated models designed to elucidate the mechanisms of implicit sensorimotor learning. In this review, we argue for a broader perspective, emphasizing the contribution of explicit strategies to sensorimotor learning tasks. Furthermore, we propose a theoretical framework for motor learning that consists of three fundamental processes: reasoning, the process of understanding action–outcome relationships; refinement, the process of optimizing sensorimotor and cognitive parameters to achieve motor goals; and retrieval, the process of inferring the context and recalling a control policy. We anticipate that this ‘3R’ framework for understanding how complex movements are learned will open exciting avenues for future research at the intersection between cognition and action.