The clonal structure and dynamics of the human T cell response to an organic chemical hapten

  1. Tahel Ronel
  2. Matthew Harries
  3. Kate Wicks
  4. Theres Oakes
  5. Helen Singleton
  6. Rebecca Dearman
  7. Gavin Maxwell
  8. Benny Chain  Is a corresponding author
  1. University College London, United Kingdom
  2. University of Manchester, United Kingdom
  3. Unilever, United Kingdom

Abstract

Diphenylcyclopropenone (DPC) is an organic chemical hapten which induces allergic contact dermatitis, and is used in treatment of warts, melanoma and alopecia areata. This therapeutic setting therefore provided an opportunity to study T cell receptor (TCR) repertoire changes in response to hapten sensitization in humans. Repeated exposure to DPC induced highly dynamic transient expansions of a polyclonal diverse T cell population. The number of TCRs expanded early after sensitization varies between individuals, and predicts the magnitude of the allergic reaction. The expanded TCRs show preferential TCR V and J gene usage, and consist of clusters of TCRs with similar sequences, two characteristic features of antigen-driven responses. The expanded TCRs share subtle sequence motifs that can be captured using a Dynamic Bayesian Network. These observations suggest the response to DPC is mediated by a polyclonal population of T cells recognizing a small number of dominant antigens.

Data availability

All DNA sequences have been submitted to the Short Read Archive under identifier SUB6567504 .

The following data sets were generated

Article and author information

Author details

  1. Tahel Ronel

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9513-9181
  2. Matthew Harries

    Faculty of biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    No competing interests declared.
  3. Kate Wicks

    Faculty of biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    No competing interests declared.
  4. Theres Oakes

    Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Helen Singleton

    Faculty of biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    No competing interests declared.
  6. Rebecca Dearman

    Faculty of biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    No competing interests declared.
  7. Gavin Maxwell

    Safety and Environmental Assurance Centre, Unilever, Bedford, United Kingdom
    Competing interests
    Gavin Maxwell, GM is an employee of Unilever PLC. Apart from GM's contribution (see author contributions) the funder was not involved in the study design, collection, analysis, and interpretation of data, the writing of this article or the decision to submit it for publication..
  8. Benny Chain

    Infection and Immunity, University College London, London, United Kingdom
    For correspondence
    b.chain@ucl.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7417-3970

Funding

Unilever

  • Benny Chain

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Armita Nourmohammad, University of Washington, United States

Ethics

Human subjects: The protocol was approved by the University College London Hospital Ethics Committee 06/Q0502/92. A total of 34 patients were recruited to this study (NRES Ethics Committee East of England - Cambridgeshire and Hertfordshire [14/EE/1067]). Participants were recruited from patients who had been diagnosed with alopecia, were aged between 18 and 70, identified as suitable for DPC treatment by a consultant dermatologist, and were now attending their first visit to the Alopecia Clinic at Salford Royal Hospital for DPC therapy. This study ran alongside patients' prescribed DPC treatment (weekly doses of DPC to the scalp to induce inflammation and hair regrowth). All participants gave their informed consent to participate, and were free to withdraw from the study at any time and for any reason without affecting their treatment. Patients were excluded from the study if they were pregnant.

Version history

  1. Received: December 27, 2019
  2. Accepted: January 12, 2021
  3. Accepted Manuscript published: January 12, 2021 (version 1)
  4. Version of Record published: February 12, 2021 (version 2)

Copyright

© 2021, Ronel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,177
    views
  • 134
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tahel Ronel
  2. Matthew Harries
  3. Kate Wicks
  4. Theres Oakes
  5. Helen Singleton
  6. Rebecca Dearman
  7. Gavin Maxwell
  8. Benny Chain
(2021)
The clonal structure and dynamics of the human T cell response to an organic chemical hapten
eLife 10:e54747.
https://doi.org/10.7554/eLife.54747

Share this article

https://doi.org/10.7554/eLife.54747

Further reading

    1. Immunology and Inflammation
    Xiaozhuo Yu, Wen Zhou ... Yanhong Ji
    Research Article

    The evolutionary conservation of non-core RAG regions suggests significant roles that might involve quantitative or qualitative alterations in RAG activity. Off-target V(D)J recombination contributes to lymphomagenesis and is exacerbated by RAG2’ C-terminus absence in Tp53−/− mice thymic lymphomas. However, the genomic stability effects of non-core regions from both Rag1c/c and Rag2c/c in BCR-ABL1+ B-lymphoblastic leukemia (BCR-ABL1+ B-ALL), the characteristics, and mechanisms of non-core regions in suppressing off-target V(D)J recombination remain unclear. Here, we established three mouse models of BCR-ABL1+ B-ALL in mice expressing full-length RAG (Ragf/f), core RAG1 (Rag1c/c), and core RAG2 (Rag2c/c). The Ragc/c (Rag1c/c and Rag2c/c) leukemia cells exhibited greater malignant tumor characteristics compared to Ragf/f cells. Additionally, Ragc/c cells showed higher frequency of off-target V(D)J recombination and oncogenic mutations than Ragf/f. We also revealed decreased RAG cleavage accuracy in Ragc/c cells and a smaller recombinant size in Rag1c/c cells, which could potentially exacerbate off-target V(D)J recombination in Ragc/c cells. In conclusion, these findings indicate that the non-core RAG regions, particularly the non-core region of RAG1, play a significant role in preserving V(D)J recombination precision and genomic stability in BCR-ABL1+ B-ALL.

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.