Metabolic response of blood vessels to TNFα

  1. Abidemi Junaid
  2. Johannes Schoeman
  3. Wei Yang
  4. Wendy Stam
  5. Alireza Mashaghi
  6. Anton Jan van Zonneveld
  7. Thomas Hankemeier  Is a corresponding author
  1. Leiden University, Netherlands
  2. Leiden University Medical Center, Netherlands

Abstract

TNFa signaling in the vascular endothelium elicits multiple inflammatory responses that drive vascular destabilization and leakage. Bioactive lipids are main drivers of these processes. In vitro mechanistic studies of bioactive lipids have been largely based on two-dimensional endothelial cell cultures that, due to lack of laminar flow and the growth of the cells on non-compliant stiff substrates, often display a pro-inflammatory phenotype. This complicates the assessment of inflammatory processes. Three-dimensional microvessels-on-a-chip models provide a unique opportunity to generate endothelial microvessels in a more physiological environment. Using an optimized targeted liquid chromatography-tandem mass spectrometry measurements of a panel of pro- and anti-inflammatory bioactive lipids, we measure the profile changes upon administration of TNFa. We demonstrate that bioactive lipid profiles can be readily detected from three-dimensional microvessels-on-a-chip and display a more dynamic, less inflammatory response to TNFa, that resembles more the human situation, compared to classical two-dimensional endothelial cell cultures.

Data availability

The data used to generate the figures and tables can be found in the Source Data File.

Article and author information

Author details

  1. Abidemi Junaid

    Systems Pharmacology Cluster, Analytical Biosciences, LACDR, Leiden University, Leiden, Netherlands
    Competing interests
    No competing interests declared.
  2. Johannes Schoeman

    Systems Pharmacology Cluster, Analytical Biosciences, LACDR, Leiden University, Leiden, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0905-2467
  3. Wei Yang

    Systems Pharmacology Cluster, Analytical Biosciences, LACDR, Leiden University, Leiden, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3394-7570
  4. Wendy Stam

    Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
  5. Alireza Mashaghi

    Systems Pharmacology Cluster, Medical Systems Biophysics and Bioengineering, LACDR, Leiden University, Leiden, Netherlands
    Competing interests
    No competing interests declared.
  6. Anton Jan van Zonneveld

    Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
  7. Thomas Hankemeier

    Systems Pharmacology Cluster, Analytical Biosciences, LACDR, Leiden University, Leiden, Netherlands
    For correspondence
    hankemeier@lacdr.leidenuniv.nl
    Competing interests
    Thomas Hankemeier, TH is co-founder of MIMETAS and has some shares in MIMETAS..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7871-2073

Funding

Hartstichting (RECONNECT CVON Groot)

  • Abidemi Junaid
  • Anton Jan van Zonneveld
  • Thomas Hankemeier

ZonMw (114022501)

  • Abidemi Junaid
  • Anton Jan van Zonneveld
  • Thomas Hankemeier

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (16249)

  • Alireza Mashaghi
  • Thomas Hankemeier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Arduino A Mangoni, Flinders Medical Centre, Australia

Version history

  1. Received: December 27, 2019
  2. Accepted: August 2, 2020
  3. Accepted Manuscript published: August 4, 2020 (version 1)
  4. Version of Record published: September 7, 2020 (version 2)

Copyright

© 2020, Junaid et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,373
    views
  • 345
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Abidemi Junaid
  2. Johannes Schoeman
  3. Wei Yang
  4. Wendy Stam
  5. Alireza Mashaghi
  6. Anton Jan van Zonneveld
  7. Thomas Hankemeier
(2020)
Metabolic response of blood vessels to TNFα
eLife 9:e54754.
https://doi.org/10.7554/eLife.54754

Share this article

https://doi.org/10.7554/eLife.54754

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Zachary Shaffer, Roberto Romero ... Nardhy Gomez-Lopez
    Research Article

    Background:

    Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Most cases of preterm birth occur spontaneously and result from preterm labor with intact (spontaneous preterm labor [sPTL]) or ruptured (preterm prelabor rupture of membranes [PPROM]) membranes. The prediction of spontaneous preterm birth (sPTB) remains underpowered due to its syndromic nature and the dearth of independent analyses of the vaginal host immune response. Thus, we conducted the largest longitudinal investigation targeting vaginal immune mediators, referred to herein as the immunoproteome, in a population at high risk for sPTB.

    Methods:

    Vaginal swabs were collected across gestation from pregnant women who ultimately underwent term birth, sPTL, or PPROM. Cytokines, chemokines, growth factors, and antimicrobial peptides in the samples were quantified via specific and sensitive immunoassays. Predictive models were constructed from immune mediator concentrations.

    Results:

    Throughout uncomplicated gestation, the vaginal immunoproteome harbors a cytokine network with a homeostatic profile. Yet, the vaginal immunoproteome is skewed toward a pro-inflammatory state in pregnant women who ultimately experience sPTL and PPROM. Such an inflammatory profile includes increased monocyte chemoattractants, cytokines indicative of macrophage and T-cell activation, and reduced antimicrobial proteins/peptides. The vaginal immunoproteome has improved predictive value over maternal characteristics alone for identifying women at risk for early (<34 weeks) sPTB.

    Conclusions:

    The vaginal immunoproteome undergoes homeostatic changes throughout gestation and deviations from this shift are associated with sPTB. Furthermore, the vaginal immunoproteome can be leveraged as a potential biomarker for early sPTB, a subset of sPTB associated with extremely adverse neonatal outcomes.

    Funding:

    This research was conducted by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS) under contract HHSN275201300006C. ALT, KRT, and NGL were supported by the Wayne State University Perinatal Initiative in Maternal, Perinatal and Child Health.

    1. Medicine
    Nguyen Lam Vuong, Nguyen Than Ha Quyen ... Ronald Geskus
    Research Article

    Background:

    Viremia is a critical factor in understanding the pathogenesis of dengue infection, but limited data exist on viremia kinetics. This study aimed to investigate the kinetics of viremia and its effects on subsequent platelet count, severe dengue, and plasma leakage.

    Methods:

    We pooled data from three studies conducted in Vietnam between 2000 and 2016, involving 2340 dengue patients with daily viremia measurements and platelet counts after symptom onset. Viremia kinetics were assessed using a random effects model that accounted for left-censored data. The effects of viremia on subsequent platelet count and clinical outcomes were examined using a landmark approach with a random effects model and logistic regression model with generalized estimating equations, respectively. The rate of viremia decline was derived from the model of viremia kinetics. Its effect on the clinical outcomes was assessed by logistic regression models.

    Results:

    Viremia levels rapidly decreased following symptom onset, with variations observed depending on the infecting serotype. DENV-1 exhibited the highest mean viremia levels during the first 5–6 days, while DENV-4 demonstrated the shortest clearance time. Higher viremia levels were associated with decreased subsequent platelet counts from day 6 onwards. Elevated viremia levels on each illness day increased the risk of developing severe dengue and plasma leakage. However, the effect size decreased with later illness days. A more rapid decline in viremia is associated with a reduced risk of the clinical outcomes.

    Conclusions:

    This study provides comprehensive insights into viremia kinetics and its effect on subsequent platelet count and clinical outcomes in dengue patients. Our findings underscore the importance of measuring viremia levels during the early febrile phase for dengue studies and support the use of viremia kinetics as outcome for phase-2 dengue therapeutic trials.

    Funding:

    Wellcome Trust and European Union Seventh Framework Programme.