Epigenetic regulation of Wnt7b expression by the cis-acting long noncoding RNA Lnc-Rewind in muscle stem cells
Abstract
Skeletal muscle possesses an outstanding capacity to regenerate upon injury due to the adult muscle stem cells (MuSCs) activity. This ability requires the proper balance between MuSCs expansion and differentiation which is critical for muscle homeostasis and contributes, if deregulated, to muscle diseases. Here, we functionally characterize a novel chromatin-associated lncRNA, Lnc-Rewind, which is expressed in murine MuSCs and conserved in human. We find that, in mouse, Lnc-Rewind acts as an epigenetic regulator of MuSCs proliferation and expansion by influencing the expression of skeletal muscle genes and several components of the WNT (Wingless-INT) signalling pathway. Among them, we identified the nearby Wnt7b gene as a direct Lnc-Rewind target. We show that Lnc-Rewind interacts with the G9a histone lysine methyltransferase and mediates the in cis repression of Wnt7b by H3K9me2 deposition. Overall, these findings provide novel insights into the epigenetic regulation of adult muscle stem cells fate by lncRNAs.
Data availability
Sequencing data have been deposited in GEO under accession code GSE141396. All data generated or analysed during this study are included in the manuscript and supporting files
-
Discovery of Novel LncRNA species differentially expressed during murine muscle differentiationEuropean Nucleotide Archive (ENA) accession number, PRJEB6112.
-
Gene expression profiling of human and murine in vitro muscle differentiationGene Expression Omnibus (GEO) accession number, GSE70389.
Article and author information
Author details
Funding
Sapienza Università di Roma (prot. RM11715C7C8176C1)
- Monica Ballarino
Sapienza Università di Roma (RM11916B7A39DCE5)
- Monica Ballarino
Ministero dell'Istruzione, dell'Università e della Ricerca (RBSI14QMG0)
- Chiara Mozzetta
Associazione Italiana per la Ricerca sul Cancro (MyFIRST grant n.18993)
- Chiara Mozzetta
AFM-Telethon (#22489)
- Chiara Mozzetta
Collection of National Chemical Compounds and Screening Center (LIFE2020-Regione Lazio)
- Chiara Mozzetta
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: For the experiments described in this study, C57/BL10 wild-type mice were used and differences which were observed in both male and female mice were included in experiments. Animals were treated in respect to housing, nutrition and care according to the guidelines of Good laboratory Practice (GLP). All experimental protocols (Protocol N{degree sign} 7FF2C.4 -Authorization N{degree sign} 746/2016-PR) were approved and conformed to the regulatory standards. All animals were kept in a temperature of 22{degree sign}C {plus minus} 3{degree sign}C with a humidity between 50% and 60%, in animal cages with at least 5 animals.
Copyright
© 2021, Cipriano et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,901
- views
-
- 253
- downloads
-
- 24
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Developmental Biology
In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.
-
- Cell Biology
The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.