Abstract

Clytia hemisphaerica jellyfish, with their tetraradial symmetry, offer a novel paradigm for addressing patterning mechanisms during regeneration. Here we show that an interplay between mechanical forces, cell migration and proliferation allows jellyfish fragments to regain shape and functionality rapidly, notably by efficient restoration of the central feeding organ (manubrium). Fragmentation first triggers actomyosin-powered remodeling that restores body umbrella shape, causing radial smooth muscle fibers to converge around 'hubs' which serve as positional landmarks. Stabilization of these hubs, and associated expression of Wnt6, depends on the configuration of the adjoining muscle fiber 'spokes'. Stabilized hubs presage the site of the manubrium blastema, whose growth is Wnt/β-catenin dependent and fueled by both cell proliferation and long-range cell recruitment. Manubrium morphogenesis is modulated by its connections with the gastrovascular canal system. We conclude that body patterning in regenerating jellyfish emerges mainly from local interactions, triggered and directed by the remodeling process.

Data availability

Transcriptomic data are being deposited in ENA (EBI) - accession code PRJEB37920. All other data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Chiara Sinigaglia

    Institut de Genomique Fonctionelle de Lyon, ENS Lyon, Lyon, France
    For correspondence
    chi.sinigaglia@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7195-7091
  2. Sophie Peron

    Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, Villefranche-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Jeanne Eichelbrenner

    Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, Villefranche-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Sandra Chevalier

    Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, Villefranche-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Julia Steger

    Molecular Evolution and Development, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Carine Barreau

    Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, Villefranche-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Evelyn Houliston

    Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, Villefranche-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9264-2585
  8. Lucas Leclère

    Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, Villefranche-sur-mer, France
    For correspondence
    lucas.leclere@obs-vlfr.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7440-0467

Funding

Agence Nationale de la Recherche (ANR-13-PDOC-0016)

  • Lucas Leclère

Agence Nationale de la Recherche (ANR-19-CE13-0003)

  • Lucas Leclère

Fondation pour la Recherche Médicale (FDT201805005536)

  • Sophie Peron

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Sinigaglia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,974
    views
  • 636
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chiara Sinigaglia
  2. Sophie Peron
  3. Jeanne Eichelbrenner
  4. Sandra Chevalier
  5. Julia Steger
  6. Carine Barreau
  7. Evelyn Houliston
  8. Lucas Leclère
(2020)
Pattern regulation in a regenerating jellyfish
eLife 9:e54868.
https://doi.org/10.7554/eLife.54868

Share this article

https://doi.org/10.7554/eLife.54868

Further reading

    1. Developmental Biology
    Shannon H Carroll, Sogand Schafer ... Eric C Liao
    Research Article

    Wnt signaling plays crucial roles in embryonic patterning including the regulation of convergent extension (CE) during gastrulation, the establishment of the dorsal axis, and later, craniofacial morphogenesis. Further, Wnt signaling is a crucial regulator of craniofacial morphogenesis. The adapter proteins Dact1 and Dact2 modulate the Wnt signaling pathway through binding to Disheveled. However, the distinct relative functions of Dact1 and Dact2 during embryogenesis remain unclear. We found that dact1 and dact2 genes have dynamic spatiotemporal expression domains that are reciprocal to one another suggesting distinct functions during zebrafish embryogenesis. Both dact1 and dact2 contribute to axis extension, with compound mutants exhibiting a similar CE defect and craniofacial phenotype to the wnt11f2 mutant. Utilizing single-cell RNAseq and an established noncanonical Wnt pathway mutant with a shortened axis (gpc4), we identified dact1/2-specific roles during early development. Comparative whole transcriptome analysis between wildtype and gpc4 and wildtype and dact1/2 compound mutants revealed a novel role for dact1/2 in regulating the mRNA expression of the classical calpain capn8. Overexpression of capn8 phenocopies dact1/2 craniofacial dysmorphology. These results identify a previously unappreciated role of capn8 and calcium-dependent proteolysis during embryogenesis. Taken together, our findings highlight the distinct and overlapping roles of dact1 and dact2 in embryonic craniofacial development, providing new insights into the multifaceted regulation of Wnt signaling.

    1. Developmental Biology
    Sudershana Nair, Nicholas E Baker
    Research Article

    Many cell fate decisions are determined transcriptionally. Accordingly, some fate specification is prevented by Inhibitor of DNA-binding (Id) proteins that interfere with DNA binding by master regulatory transcription factors. We show that the Drosophila Id protein Extra macrochaetae (Emc) also affects developmental decisions by regulating caspase activity. Emc, which prevents proneural bHLH transcription factors from specifying neural cell fate, also prevents homodimerization of another bHLH protein, Daughterless (Da), and thereby maintains expression of the Death-Associated Inhibitor of Apoptosis (diap1) gene. Accordingly, we found that multiple effects of emc mutations on cell growth and on eye development were all caused by activation of caspases. These effects included acceleration of the morphogenetic furrow, failure of R7 photoreceptor cell specification, and delayed differentiation of non-neuronal cone cells. Within emc mutant clones, Notch signaling was elevated in the morphogenetic furrow, increasing morphogenetic furrow speed. This was associated with caspase-dependent increase in levels of Delta protein, the transmembrane ligand for Notch. Posterior to the morphogenetic furrow, elevated Delta cis-inhibited Notch signaling that was required for R7 specification and cone cell differentiation. Growth inhibition of emc mutant clones in wing imaginal discs also depended on caspases. Thus, emc mutations reveal the importance of restraining caspase activity even in non-apoptotic cells to prevent abnormal development, in the Drosophila eye through effects on Notch signaling.