1. Cell Biology
  2. Neuroscience
Download icon

Cell-specific exon methylation and CTCF binding in neurons regulates calcium ion channel splicing and function

  1. Eduardo Javier López Soto
  2. Diane Lipscombe  Is a corresponding author
  1. Brown University, United States
Research Article
  • Cited 8
  • Views 2,003
  • Annotations
Cite this article as: eLife 2020;9:e54879 doi: 10.7554/eLife.54879


Cell-specific alternative splicing modulates myriad cell functions and is disrupted in disease. The mechanisms governing alternative splicing are known for relatively few genes and typically focus on RNA splicing factors. In sensory neurons, cell-specific alternative splicing of the presynaptic CaV channel Cacna1b gene modulates opioid sensitivity. How this splicing is regulated is unknown. We find that cell and exon -specific DNA hypomethylation permits CTCF binding, the master regulator of mammalian chromatin structure, which, in turn, controls splicing in a DRG-derived cell line. In vivo, hypomethylation of an alternative exon specifically in nociceptors, likely permits CTCF binding and expression of CaV2.2 channel isoforms with increased opioid sensitivity in mice. Following nerve injury, exon methylation is increased, and splicing is disrupted. Our studies define the molecular mechanisms of cell-specific alternative splicing of a functionally validated exon in normal and disease states – and reveal a potential target for the treatment of chronic pain.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Eduardo Javier López Soto

    Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Diane Lipscombe

    Neuroscience, Brown University, Providence, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7146-9119


National Institute of Neurological Disorders and Stroke (NS055251)

  • Diane Lipscombe

Warren Alpert Foundation

  • Eduardo Javier López Soto

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Animal experimentation: Mice were housed and bred at Brown University. All protocols and procedures were approved by the Brown University Institutional Animal Care and Use Committee (IACUC # 1706000275).Mice were anesthetized with 3% isoflurane, and all effort was made to minimize suffering.

Reviewing Editor

  1. David D Ginty, Harvard Medical School, United States

Publication history

  1. Received: January 6, 2020
  2. Accepted: March 26, 2020
  3. Accepted Manuscript published: March 26, 2020 (version 1)
  4. Version of Record published: April 3, 2020 (version 2)


© 2020, López Soto & Lipscombe

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 2,003
    Page views
  • 328
  • 8

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Natalya Pashkova et al.
    Research Article

    Attachment of ubiquitin (Ub) to cell surface proteins serves as a signal for internalization via clathrin-mediated endocytosis (CME). How ubiquitinated membrane proteins engage the internalization apparatus remains unclear. The internalization apparatus contains proteins such as Epsin and Eps15, which bind Ub, potentially acting as adaptors for Ub-based internalization signals. Here we show that additional components of the endocytic machinery including CALM, HIP1R, and Sla2 bind Ub via their N-terminal ANTH domain, a domain belonging to the superfamily of ENTH and VHS domains. Structural studies revealed that Ub binds with µM affinity to a unique C-terminal region within the ANTH domain not found in ENTH domains. Functional studies showed that combined loss of Ub-binding by ANTH-domain proteins and other Ub-binding domains within the yeast internalization apparatus caused defects in the Ub-dependent internalization of the GPCR Ste2 that was engineered to rely exclusively on Ub as an internalization signal. In contrast, these mutations had no effect on the internalization of Ste2 engineered to use an alternate Ub-independent internalization signal. These studies define new components of the internalization machinery that work collectively with Epsin and Eps15 to specify recognition of Ub as an internalization signal.

    1. Cell Biology
    Richa Sardana et al.
    Short Report

    Protein glycosylation in the Golgi is a sequential process that requires proper distribution of transmembrane glycosyltransferase enzymes in the appropriate Golgi compartments. Some of the cytosolic machinery required for the steady-state localization of some Golgi enzymes are known but existing models do not explain how many of these enzymes are localized. Here, we uncover the role of an integral membrane protein in yeast, Erd1, as a key facilitator of Golgi glycosyltransferase recycling by directly interacting with both the Golgi enzymes and the cytosolic receptor, Vps74. Loss of Erd1 function results in mislocalization of Golgi enzymes to the vacuole/lysosome. We present evidence that Erd1 forms an integral part of the recycling machinery and ensures productive recycling of several early Golgi enzymes. Our work provides new insights on how the localization of Golgi glycosyltransferases is spatially and temporally regulated, and is finely tuned to the cues of Golgi maturation.