Maf and Mafb control mouse pallial interneuron fate and maturation through neuropsychiatric disease gene regulation

Abstract

Maf (c-Maf) and Mafb transcription factors (TFs) have compensatory roles in repressing somatostatin (SST+) interneuron (IN) production in medial ganglionic eminence (MGE) secondary progenitors in mice. Maf and Mafb conditional deletion (cDKO) decreases the survival of MGE-derived cortical interneurons (CINs) and changes their physiological properties. Herein, we show that (1) Mef2c and Snap25 are positively regulated by Maf and Mafb to drive IN morphological maturation; (2) Maf and Mafb promote Mef2c expression which specifies parvalbumin (PV+) INs; (3) Elmo1, Igfbp4 and Mef2c are candidate markers of immature PV+ hippocampal INs (HIN). Furthermore, Maf/Mafb neonatal cDKOs have decreased CINs and increased HINs, that express Pnoc, an HIN specific marker. Our findings not only elucidate key gene targets of Maf and Mafb that control IN development, but also identify for the first time TFs that differentially regulate CIN vs. HIN production.

Data availability

We submitted the original source data that was used for Seurat pipeline analysis to GEO under the accession number GSE144222. Readers can utilize these datasets for reanalysis and new analysis using Seurat pipeline or other customized codes for more data mining.

The following data sets were generated

Article and author information

Author details

  1. Emily Ling-Lin Pai

    Psychiatry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6967-5239
  2. Jin Chen

    Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Siavash Fazel Darbandi

    Psychiatry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  4. Frances S Cho

    Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  5. Jiapei Chen

    Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  6. Susan Lindtner

    Psychiatry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  7. Julia S Chu

    Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  8. Jeanne Paz

    Neuroscience Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  9. Daniel Vogt

    Pediatrics and Human Development, Michigan State University, Grand Rapids, United States
    Competing interests
    No competing interests declared.
  10. Mercedes F Paredes

    Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  11. John LR Rubenstein

    Department of Psychiatry, University of California, San Francisco, San Francisco, United States
    For correspondence
    John.rubenstein@ucsf.edu
    Competing interests
    John LR Rubenstein, is cofounder, stockholder, and currently on the scientific board of Neurona, a company studying the potential therapeutic use of interneuron transplantation.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4414-7667

Funding

National Institute of Mental Health (MH081880)

  • Emily Ling-Lin Pai
  • John LR Rubenstein

National Science Foundation (1608236)

  • Frances S Cho
  • Jeanne Paz

National Science Foundation (1144247)

  • Frances S Cho

NIH Office of the Director (F31 NS111819-01A1)

  • Frances S Cho

National Institute of Mental Health (MH049428)

  • John LR Rubenstein

National Institute of Diabetes and Digestive and Kidney Diseases (P30DK098722)

  • Emily Ling-Lin Pai
  • John LR Rubenstein

NIH Office of the Director (GM134154)

  • Jin Chen

National Institute of Neurological Disorders and Stroke (NS34661)

  • Siavash Fazel Darbandi
  • John LR Rubenstein

Simons Foundation (SFARI A133320)

  • Siavash Fazel Darbandi
  • John LR Rubenstein

National Institute of Neurological Disorders and Stroke (K08NS091537)

  • Julia S Chu
  • Mercedes F Paredes

Spectrum Health-MSU Alliance Corporation

  • Daniel Vogt

National Institute of Neurological Disorders and Stroke (R01NS096369)

  • Frances S Cho
  • Jiapei Chen
  • Jeanne Paz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures and animal care were approved and performed in accordance with the University of California San Francisco Laboratory Animal Research Center (LARC) guidelines. All animals were handled based on the approved institutional animal care and use committee (IACUC) protocol (AN180174-01B) at the University of California San Francisco.

Copyright

© 2020, Pai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,404
    views
  • 340
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emily Ling-Lin Pai
  2. Jin Chen
  3. Siavash Fazel Darbandi
  4. Frances S Cho
  5. Jiapei Chen
  6. Susan Lindtner
  7. Julia S Chu
  8. Jeanne Paz
  9. Daniel Vogt
  10. Mercedes F Paredes
  11. John LR Rubenstein
(2020)
Maf and Mafb control mouse pallial interneuron fate and maturation through neuropsychiatric disease gene regulation
eLife 9:e54903.
https://doi.org/10.7554/eLife.54903

Share this article

https://doi.org/10.7554/eLife.54903

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Thi Thom Mac, Teddy Fauquier ... Thierry Brue
    Research Article

    Deficient Anterior pituitary with common Variable Immune Deficiency (DAVID) syndrome results from NFKB2 heterozygous mutations, causing adrenocorticotropic hormone deficiency (ACTHD) and primary hypogammaglobulinemia. While NFKB signaling plays a crucial role in the immune system, its connection to endocrine symptoms is unclear. We established a human disease model to investigate the role of NFKB2 in pituitary development by creating pituitary organoids from CRISPR/Cas9-edited human induced pluripotent stem cells (hiPSCs). Introducing homozygous TBX19K146R/K146R missense pathogenic variant in hiPSC, an allele found in congenital isolated ACTHD, led to a strong reduction of corticotrophs number in pituitary organoids. Then, we characterized the development of organoids harboring NFKB2D865G/D865G mutations found in DAVID patients. NFKB2D865G/D865G mutation acted at different levels of development with mutant organoids displaying changes in the expression of genes involved on pituitary progenitor generation (HESX1, PITX1, LHX3), hypothalamic secreted factors (BMP4, FGF8, FGF10), epithelial-to-mesenchymal transition, lineage precursors development (TBX19, POU1F1) and corticotrophs terminal differentiation (PCSK1, POMC), and showed drastic reduction in the number of corticotrophs. Our results provide strong evidence for the direct role of NFKB2 mutations in the endocrine phenotype observed in patients leading to a new classification of a NFKB2 variant of previously unknown clinical significance as pathogenic in pituitary development.

    1. Developmental Biology
    2. Genetics and Genomics
    Debashish U Menon, Prabuddha Chakraborty ... Terry Magnuson
    Research Article

    We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1 a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Germ cells showing a Cre-induced loss of ARID1A arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. We identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA meiotic recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.