Maf and Mafb control mouse pallial interneuron fate and maturation through neuropsychiatric disease gene regulation

Abstract

Maf (c-Maf) and Mafb transcription factors (TFs) have compensatory roles in repressing somatostatin (SST+) interneuron (IN) production in medial ganglionic eminence (MGE) secondary progenitors in mice. Maf and Mafb conditional deletion (cDKO) decreases the survival of MGE-derived cortical interneurons (CINs) and changes their physiological properties. Herein, we show that (1) Mef2c and Snap25 are positively regulated by Maf and Mafb to drive IN morphological maturation; (2) Maf and Mafb promote Mef2c expression which specifies parvalbumin (PV+) INs; (3) Elmo1, Igfbp4 and Mef2c are candidate markers of immature PV+ hippocampal INs (HIN). Furthermore, Maf/Mafb neonatal cDKOs have decreased CINs and increased HINs, that express Pnoc, an HIN specific marker. Our findings not only elucidate key gene targets of Maf and Mafb that control IN development, but also identify for the first time TFs that differentially regulate CIN vs. HIN production.

Data availability

We submitted the original source data that was used for Seurat pipeline analysis to GEO under the accession number GSE144222. Readers can utilize these datasets for reanalysis and new analysis using Seurat pipeline or other customized codes for more data mining.

The following data sets were generated

Article and author information

Author details

  1. Emily Ling-Lin Pai

    Psychiatry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6967-5239
  2. Jin Chen

    Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Siavash Fazel Darbandi

    Psychiatry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  4. Frances S Cho

    Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  5. Jiapei Chen

    Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  6. Susan Lindtner

    Psychiatry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  7. Julia S Chu

    Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  8. Jeanne Paz

    Neuroscience Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  9. Daniel Vogt

    Pediatrics and Human Development, Michigan State University, Grand Rapids, United States
    Competing interests
    No competing interests declared.
  10. Mercedes F Paredes

    Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  11. John LR Rubenstein

    Department of Psychiatry, University of California, San Francisco, San Francisco, United States
    For correspondence
    John.rubenstein@ucsf.edu
    Competing interests
    John LR Rubenstein, is cofounder, stockholder, and currently on the scientific board of Neurona, a company studying the potential therapeutic use of interneuron transplantation.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4414-7667

Funding

National Institute of Mental Health (MH081880)

  • Emily Ling-Lin Pai
  • John LR Rubenstein

National Science Foundation (1608236)

  • Frances S Cho
  • Jeanne Paz

National Science Foundation (1144247)

  • Frances S Cho

NIH Office of the Director (F31 NS111819-01A1)

  • Frances S Cho

National Institute of Mental Health (MH049428)

  • John LR Rubenstein

National Institute of Diabetes and Digestive and Kidney Diseases (P30DK098722)

  • Emily Ling-Lin Pai
  • John LR Rubenstein

NIH Office of the Director (GM134154)

  • Jin Chen

National Institute of Neurological Disorders and Stroke (NS34661)

  • Siavash Fazel Darbandi
  • John LR Rubenstein

Simons Foundation (SFARI A133320)

  • Siavash Fazel Darbandi
  • John LR Rubenstein

National Institute of Neurological Disorders and Stroke (K08NS091537)

  • Julia S Chu
  • Mercedes F Paredes

Spectrum Health-MSU Alliance Corporation

  • Daniel Vogt

National Institute of Neurological Disorders and Stroke (R01NS096369)

  • Frances S Cho
  • Jiapei Chen
  • Jeanne Paz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures and animal care were approved and performed in accordance with the University of California San Francisco Laboratory Animal Research Center (LARC) guidelines. All animals were handled based on the approved institutional animal care and use committee (IACUC) protocol (AN180174-01B) at the University of California San Francisco.

Copyright

© 2020, Pai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,452
    views
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emily Ling-Lin Pai
  2. Jin Chen
  3. Siavash Fazel Darbandi
  4. Frances S Cho
  5. Jiapei Chen
  6. Susan Lindtner
  7. Julia S Chu
  8. Jeanne Paz
  9. Daniel Vogt
  10. Mercedes F Paredes
  11. John LR Rubenstein
(2020)
Maf and Mafb control mouse pallial interneuron fate and maturation through neuropsychiatric disease gene regulation
eLife 9:e54903.
https://doi.org/10.7554/eLife.54903

Share this article

https://doi.org/10.7554/eLife.54903

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Svanhild Nornes, Susann Bruche ... Sarah De Val
    Research Article

    The establishment and growth of the arterial endothelium requires the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined in silico analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (Acvrl1/Alk1, Cxcr4, Cxcl12, Efnb2, Gja4/Cx37, Gja5/Cx40, Nrp1 and Unc5b). Next, to elucidate the regulatory pathways upstream of arterial gene transcription, we investigated the transcription factors binding each arterial enhancer compared to a similar assessment of non-arterial endothelial enhancers. These results found that binding of SOXF and ETS factors was a common occurrence at both arterial and pan-endothelial enhancers, suggesting neither are sufficient to direct arterial specificity. Conversely, FOX motifs independent of ETS motifs were over-represented at arterial enhancers. Further, MEF2 and RBPJ binding was enriched but not ubiquitous at arterial enhancers, potentially linked to specific patterns of behaviour within the arterial endothelium. Lastly, there was no shared or arterial-specific signature for WNT-associated TCF/LEF, TGFβ/BMP-associated SMAD1/5 and SMAD2/3, shear stress-associated KLF4 or venous-enriched NR2F2. This cohort of well characterized and in vivo-verified enhancers can now provide a platform for future studies into the interaction of different transcriptional and signalling pathways with arterial gene expression.

    1. Developmental Biology
    2. Genetics and Genomics
    Anne-Sophie Pepin, Patrycja A Jazwiec ... Sarah Kimmins
    Research Article Updated

    Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.