Control of Slc7a5 sensitivity by the voltage-sensing domain of Kv1 channels

  1. Shawn M Lamothe
  2. Nazlee Sharmin
  3. Grace Silver
  4. Motoyasu Satou
  5. Yubin Hao
  6. Toru Tateno
  7. Victoria A Baronas
  8. Harley Takatsuna Kurata  Is a corresponding author
  1. University of Alberta, Canada
  2. Dokkyo Medical University School of Medicine, Japan

Abstract

Many voltage-dependent ion channels are regulated by accessory proteins. We recently reported powerful regulation of Kv1.2 potassium channels by the amino acid transporter Slc7a5. In this study, we report that Kv1.1 channels are also regulated by Slc7a5, albeit with different functional outcomes. In heterologous expression systems, Kv1.1 exhibits prominent current enhancement ('disinhibition') with holding potentials more negative than -120 mV. Knockdown of endogenous Slc7a5 leads to larger Kv1.1 currents, and strongly attenuates the disinhibition effect, suggesting that Slc7a5 regulation of Kv1.1 involves channel inhibition that can be reversed by supraphysiological hyperpolarizing voltages. We investigated chimeric combinations of Kv1.1 and Kv1.2, demonstrating that exchange of the voltage-sensing domain controls the sensitivity and response to Slc7a5, and localize a specific position in S1 with prominent effects on Slc7a5 sensitivity. Overall, our study highlights multiple Slc7a5-sensitive Kv1 subunits, and identifies the voltage-sensing domain as a determinant of Slc7a5 modulation of Kv1 channels.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Shawn M Lamothe

    Pharmacology, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Nazlee Sharmin

    Dentistry, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Grace Silver

    Pharmacology, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Motoyasu Satou

    Biochemistry, Dokkyo Medical University School of Medicine, Soka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Yubin Hao

    Pharmacology, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Toru Tateno

    Medicine, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Victoria A Baronas

    Pharmacology, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Harley Takatsuna Kurata

    Pharmacology/Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
    For correspondence
    kurata@ualberta.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4357-4189

Funding

Canadian Institutes of Health Research (Project Grant)

  • Harley Takatsuna Kurata

Canadian Institutes of Health Research (Vanier Studentship)

  • Victoria A Baronas

University of Alberta (Rowland and Muriel Haryett fellowship)

  • Shawn M Lamothe

Natural Sciences and Engineering Research Council of Canada (USRA)

  • Grace Silver

Canadian Institutes of Health Research (Early Career Investigator)

  • Harley Takatsuna Kurata

Alberta Diabetes Institute (Salary support)

  • Harley Takatsuna Kurata

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Baron Chanda, Washington University in St. Louis, United States

Version history

  1. Received: January 6, 2020
  2. Accepted: November 6, 2020
  3. Accepted Manuscript published: November 9, 2020 (version 1)
  4. Version of Record published: November 26, 2020 (version 2)

Copyright

© 2020, Lamothe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,134
    views
  • 141
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shawn M Lamothe
  2. Nazlee Sharmin
  3. Grace Silver
  4. Motoyasu Satou
  5. Yubin Hao
  6. Toru Tateno
  7. Victoria A Baronas
  8. Harley Takatsuna Kurata
(2020)
Control of Slc7a5 sensitivity by the voltage-sensing domain of Kv1 channels
eLife 9:e54916.
https://doi.org/10.7554/eLife.54916

Share this article

https://doi.org/10.7554/eLife.54916

Further reading

    1. Neuroscience
    Jack W Lindsey, Elias B Issa
    Research Article

    Object classification has been proposed as a principal objective of the primate ventral visual stream and has been used as an optimization target for deep neural network models (DNNs) of the visual system. However, visual brain areas represent many different types of information, and optimizing for classification of object identity alone does not constrain how other information may be encoded in visual representations. Information about different scene parameters may be discarded altogether (‘invariance’), represented in non-interfering subspaces of population activity (‘factorization’) or encoded in an entangled fashion. In this work, we provide evidence that factorization is a normative principle of biological visual representations. In the monkey ventral visual hierarchy, we found that factorization of object pose and background information from object identity increased in higher-level regions and strongly contributed to improving object identity decoding performance. We then conducted a large-scale analysis of factorization of individual scene parameters – lighting, background, camera viewpoint, and object pose – in a diverse library of DNN models of the visual system. Models which best matched neural, fMRI, and behavioral data from both monkeys and humans across 12 datasets tended to be those which factorized scene parameters most strongly. Notably, invariance to these parameters was not as consistently associated with matches to neural and behavioral data, suggesting that maintaining non-class information in factorized activity subspaces is often preferred to dropping it altogether. Thus, we propose that factorization of visual scene information is a widely used strategy in brains and DNN models thereof.

    1. Neuroscience
    Zhaoran Zhang, Huijun Wang ... Kunlin Wei
    Research Article

    The sensorimotor system can recalibrate itself without our conscious awareness, a type of procedural learning whose computational mechanism remains undefined. Recent findings on implicit motor adaptation, such as over-learning from small perturbations and fast saturation for increasing perturbation size, challenge existing theories based on sensory errors. We argue that perceptual error, arising from the optimal combination of movement-related cues, is the primary driver of implicit adaptation. Central to our theory is the increasing sensory uncertainty of visual cues with increasing perturbations, which was validated through perceptual psychophysics (Experiment 1). Our theory predicts the learning dynamics of implicit adaptation across a spectrum of perturbation sizes on a trial-by-trial basis (Experiment 2). It explains proprioception changes and their relation to visual perturbation (Experiment 3). By modulating visual uncertainty in perturbation, we induced unique adaptation responses in line with our model predictions (Experiment 4). Overall, our perceptual error framework outperforms existing models based on sensory errors, suggesting that perceptual error in locating one’s effector, supported by Bayesian cue integration, underpins the sensorimotor system’s implicit adaptation.