Ultra-high field imaging reveals increased whole brain connectivity underpins cognitive strategies that attenuate pain

  1. Enrico Schulz  Is a corresponding author
  2. Anne Stankewitz
  3. Anderson M Winkler
  4. Stephanie Irving
  5. Viktor Witkovský
  6. Irene Tracey
  1. Ludwig-Maximilians-Universität München, Germany
  2. University of Oxford, United Kingdom
  3. Institute of Measurement Science, Slovak Academy of Sciences, Slovakia

Abstract

We investigated how the attenuation of pain with cognitive interventions affects brain connectivity using neuroimaging and a whole brain novel analysis approach. While receiving tonic cold pain, 20 healthy participants performed three different pain attenuation strategies during simultaneous collection of functional imaging data at 7 tesla. Participants were asked to rate their pain after each trial. We related the trial-by-trial variability of the attenuation performance to the trial-by-trial functional connectivity strength change of brain data. Across all conditions, we found that a higher performance of pain attenuation was predominantly associated with higher functional connectivity. Of note, we observed an association between low pain and high connectivity for regions that belong to brain regions long associated with pain processing, i.e. the insular and cingulate cortices. For one of the cognitive strategies (safe place), the performance of pain attenuation was explained by diffusion tensor imaging metrics of increased white matter integrity.

Data availability

The dataset has been made available at Open Science Framework (https://osf.io/tbc2u/). The source data files to generate the figures are included in the submission (Source data 1 - 7).

The following data sets were generated
    1. Enrico Schulz
    (2020) Pain Attentuation
    OSF, doi:10.17605/OSF.IO/TBC2U.

Article and author information

Author details

  1. Enrico Schulz

    Department of Neurology, Ludwig-Maximilians-Universität München, Martinsried, Germany
    For correspondence
    es@pain.sc
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8188-380X
  2. Anne Stankewitz

    Department of Neurology, Ludwig-Maximilians-Universität München, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Anderson M Winkler

    Wellcome Centre For Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephanie Irving

    Department of Neurology, Ludwig-Maximilians-Universität München, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Viktor Witkovský

    Department of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
    Competing interests
    The authors declare that no competing interests exist.
  6. Irene Tracey

    FMRIB Centre, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (2879/1-1)

  • Enrico Schulz

Wellcome (090955/Z/09/Z)

  • Irene Tracey

Wellcome (083259/Z/07/Z)

  • Irene Tracey

Medical Research Council (G0700399)

  • Irene Tracey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Rohini Kuner, Universität Heidelberg, Germany

Ethics

Human subjects: Informed consent and consent to publish was obtained in accordance with ethical standards set out by the Declaration of Helsinki (1964) and with procedures approved by the Medical Sciences Interdivisional Research Ethics Committee of the University of Oxford (REC ref: MSD-IDREC- C1-2014-157).

Version history

  1. Received: January 9, 2020
  2. Accepted: August 28, 2020
  3. Accepted Manuscript published: September 2, 2020 (version 1)
  4. Version of Record published: September 17, 2020 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,859
    views
  • 223
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Enrico Schulz
  2. Anne Stankewitz
  3. Anderson M Winkler
  4. Stephanie Irving
  5. Viktor Witkovský
  6. Irene Tracey
(2020)
Ultra-high field imaging reveals increased whole brain connectivity underpins cognitive strategies that attenuate pain
eLife 9:e55028.
https://doi.org/10.7554/eLife.55028

Share this article

https://doi.org/10.7554/eLife.55028

Further reading

    1. Neuroscience
    Cristina Sáenz de Miera, Nicole Bellefontaine ... Carol F Elias
    Research Article

    The hypothalamic ventral premammillary nucleus (PMv) is a glutamatergic nucleus essential for the metabolic control of reproduction. However, conditional deletion of leptin receptor long form (LepRb) in vesicular glutamate transporter 2 (Vglut2) expressing neurons results in virtually no reproductive deficits. In this study, we determined the role of glutamatergic neurotransmission from leptin responsive PMv neurons on puberty and fertility. We first assessed if stimulation of PMv neurons induces luteinizing hormone (LH) release in fed adult females. We used the stimulatory form of designer receptor exclusively activated by designer drugs (DREADDs) in LeprCre (LepRb-Cre) mice. We collected blood sequentially before and for 1 hr after intravenous clozapine-N-oxide injection. LH level increased in animals correctly targeted to the PMv, and LH level was correlated to the number of Fos immunoreactive neurons in the PMv. Next, females with deletion of Slc17a6 (Vglut2) in LepRb neurons (LeprΔVGlut2) showed delayed age of puberty, disrupted estrous cycles, increased gonadotropin-releasing hormone (GnRH) concentration in the axon terminals, and disrupted LH secretion, suggesting impaired GnRH release. To assess if glutamate is required for PMv actions in pubertal development, we generated a Cre-induced reexpression of endogenous LepRb (LeprloxTB) with concomitant deletion of Slc17a6 (Vglut2flox) mice. Rescue of Lepr and deletion of Slc17a6 in the PMv was obtained by stereotaxic injection of an adeno-associated virus vector expressing Cre recombinase. Control LeprloxTB mice with PMv LepRb rescue showed vaginal opening, follicle maturation, and became pregnant, while LeprloxTB;Vglut2flox mice showed no pubertal development. Our results indicate that glutamatergic neurotransmission from leptin sensitive neurons regulates the reproductive axis, and that leptin action on pubertal development via PMv neurons requires Vglut2.

    1. Neuroscience
    Zahra Ghasemahmad, Aaron Mrvelj ... Jeffrey J Wenstrup
    Research Article

    The basolateral amygdala (BLA), a brain center of emotional expression, contributes to acoustic communication by first interpreting the meaning of social sounds in the context of the listener’s internal state, then organizing the appropriate behavioral responses. We propose that modulatory neurochemicals such as acetylcholine (ACh) and dopamine (DA) provide internal-state signals to the BLA while an animal listens to social vocalizations. We tested this in a vocal playback experiment utilizing highly affective vocal sequences associated with either mating or restraint, then sampled and analyzed fluids within the BLA for a broad range of neurochemicals and observed behavioral responses of adult male and female mice. In male mice, playback of restraint vocalizations increased ACh release and usually decreased DA release, while playback of mating sequences evoked the opposite neurochemical release patterns. In non-estrus female mice, patterns of ACh and DA release with mating playback were similar to males. Estrus females, however, showed increased ACh, associated with vigilance, as well as increased DA, associated with reward-seeking. Experimental groups that showed increased ACh release also showed the largest increases in an aversive behavior. These neurochemical release patterns and several behavioral responses depended on a single prior experience with the mating and restraint behaviors. Our results support a model in which ACh and DA provide contextual information to sound analyzing BLA neurons that modulate their output to downstream brain regions controlling behavioral responses to social vocalizations.