Lipid accumulation controls the balance between surface connection and scission of caveolae

  1. Madlen Hubert
  2. Elin Larsson
  3. Naga Venkata Gayathri Vegesna
  4. Maria Ahnlund
  5. Annika I Johansson
  6. Lindon WK Moodie
  7. Richard Lundmark  Is a corresponding author
  1. Umeå University, Sweden
  2. Swedish University of Agricultural Sciences, Sweden
  3. Uppsala University, Sweden

Abstract

Caveolae are bulb-shaped invaginations of the plasma membrane (PM) that undergo scission and fusion at the cell surface and are enriched in specific lipids. However, the influence of lipid composition on caveolae surface stability is not well described or understood. Accordingly, we inserted specific lipids into the cell PM via membrane fusion and studied their acute effects on caveolae dynamics. We demonstrate that sphingomyelin stabilizes caveolae to the cell surface, while cholesterol and glycosphingolipids drive caveolae scission from the PM. Whilst all three lipids accumulated specifically in caveolae, cholesterol and sphingomyelin were actively sequestered, whereas glycosphingolipids diffused freely. The ATPase EHD2 restricts lipid diffusion and counteracts lipid-induced scission. We propose that specific lipid accumulation in caveolae generates an intrinsically unstable domain prone to scission if not restrained by EHD2 at the caveolae neck. This work provides a mechanistic link between caveolae and their ability to sense the PM lipid composition.

Data availability

All data generated or analysed during this study are included in the manuscript, supporting files and source data files provided for each figure

Article and author information

Author details

  1. Madlen Hubert

    Integrative Medical Biology, Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Elin Larsson

    Integrative Medical Biology, Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Naga Venkata Gayathri Vegesna

    Integrative Medical Biology, Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Maria Ahnlund

    Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Annika I Johansson

    Department of Molecular Biology, Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Lindon WK Moodie

    Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Richard Lundmark

    Integrative Medical Biology, Umeå University, Umeå, Sweden
    For correspondence
    richard.lundmark@umu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9104-724X

Funding

Vetenskapsrådet (dnr 2017-04028)

  • Richard Lundmark

Cancerfonden (CAN 2017/735)

  • Richard Lundmark

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Hubert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,188
    views
  • 542
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Madlen Hubert
  2. Elin Larsson
  3. Naga Venkata Gayathri Vegesna
  4. Maria Ahnlund
  5. Annika I Johansson
  6. Lindon WK Moodie
  7. Richard Lundmark
(2020)
Lipid accumulation controls the balance between surface connection and scission of caveolae
eLife 9:e55038.
https://doi.org/10.7554/eLife.55038

Share this article

https://doi.org/10.7554/eLife.55038

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    A Sofia F Oliveira, Fiona L Kearns ... Adrian J Mulholland
    Short Report

    The spike protein is essential to the SARS-CoV-2 virus life cycle, facilitating virus entry and mediating viral-host membrane fusion. The spike contains a fatty acid (FA) binding site between every two neighbouring receptor-binding domains. This site is coupled to key regions in the protein, but the impact of glycans on these allosteric effects has not been investigated. Using dynamical nonequilibrium molecular dynamics (D-NEMD) simulations, we explore the allosteric effects of the FA site in the fully glycosylated spike of the SARS-CoV-2 ancestral variant. Our results identify the allosteric networks connecting the FA site to functionally important regions in the protein, including the receptor-binding motif, an antigenic supersite in the N-terminal domain, the fusion peptide region, and another allosteric site known to bind heme and biliverdin. The networks identified here highlight the complexity of the allosteric modulation in this protein and reveal a striking and unexpected link between different allosteric sites. Comparison of the FA site connections from D-NEMD in the glycosylated and non-glycosylated spike revealed that glycans do not qualitatively change the internal allosteric pathways but can facilitate the transmission of the structural changes within and between subunits.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Conor J Howard, Nathan S Abell ... Nathan B Lubock
    Research Article

    Deep Mutational Scanning (DMS) is an emerging method to systematically test the functional consequences of thousands of sequence changes to a protein target in a single experiment. Because of its utility in interpreting both human variant effects and protein structure-function relationships, it holds substantial promise to improve drug discovery and clinical development. However, applications in this domain require improved experimental and analytical methods. To address this need, we report novel DMS methods to precisely and quantitatively interrogate disease-relevant mechanisms, protein-ligand interactions, and assess predicted response to drug treatment. Using these methods, we performed a DMS of the melanocortin-4 receptor (MC4R), a G-protein-coupled receptor (GPCR) implicated in obesity and an active target of drug development efforts. We assessed the effects of >6600 single amino acid substitutions on MC4R’s function across 18 distinct experimental conditions, resulting in >20 million unique measurements. From this, we identified variants that have unique effects on MC4R-mediated Gαs- and Gαq-signaling pathways, which could be used to design drugs that selectively bias MC4R’s activity. We also identified pathogenic variants that are likely amenable to a corrector therapy. Finally, we functionally characterized structural relationships that distinguish the binding of peptide versus small molecule ligands, which could guide compound optimization. Collectively, these results demonstrate that DMS is a powerful method to empower drug discovery and development.