An electrophysiological marker of arousal level in humans

  1. Janna Desiree Lendner  Is a corresponding author
  2. Randolph F Helfrich
  3. Bryce A Mander
  4. Luis Romundstad
  5. Jack J Lin
  6. Matthew P Walker
  7. Pal G Larsson
  8. Robert T Knight
  1. University of California, Berkeley, United States
  2. University of Tübingen, Germany
  3. University of California, Irvine, United States
  4. University of Oslo, Norway
  5. Univsersity of Oslo, Norway

Abstract

Deep non-rapid eye movement sleep (NREM) and general anesthesia with propofol are prominent states of reduced arousal linked to the occurrence of synchronized oscillations in the electroencephalogram (EEG). Although rapid eye movement (REM) sleep is also associated with diminished arousal levels, it is characterized by a desynchronized, 'wake-like' EEG. This observation implies that reduced arousal states are not necessarily only defined by synchronous oscillatory activity. Using intracranial and surface EEG recordings in four independent data sets, we demonstrate that the 1/f spectral slope of the electrophysiological power spectrum, which reflects the non-oscillatory, scale-free component of neural activity, delineates wakefulness from propofol anesthesia, NREM and REM sleep. Critically, the spectral slope discriminates wakefulness from REM sleep solely based on the neurophysiological brain state. Taken together, our findings describe a common electrophysiological marker that tracks states of reduced arousal, including different sleep stages as well as anesthesia in humans.

Data availability

Source data files have been updated and are provided here:Lendner, Janna (2020), An Electrophysiological Marker of Arousal Level in Humans, UC Berkeley, Dataset, https://doi.org/10.6078/D1NX1V

The following data sets were generated

Article and author information

Author details

  1. Janna Desiree Lendner

    Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
    For correspondence
    janna.lendner@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1967-6110
  2. Randolph F Helfrich

    Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8045-3111
  3. Bryce A Mander

    Psychiatry and Human Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Luis Romundstad

    Anesthesiology, University of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  5. Jack J Lin

    Neurology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Matthew P Walker

    Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Pal G Larsson

    Neurosurgery, Univsersity of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  8. Robert T Knight

    Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (LE 3863/2-1)

  • Janna Desiree Lendner

National Institute of Neurological Disorders and Stroke (R37NS21135)

  • Robert T Knight

Deutsche Forschungsgemeinschaft (HE 8329/2-1)

  • Randolph F Helfrich

National Institute of Mental Health (R01AG03116408)

  • Matthew P Walker

National Institute of Mental Health (RF1AG05401901)

  • Matthew P Walker

National Institute of Mental Health (RF1AG05410601)

  • Matthew P Walker

National Institute of Mental Health (F32-AG039170)

  • Bryce A Mander

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Saskia Haegens, Columbia University College of Physicians and Surgeons, United States

Ethics

Human subjects: We collected four independent datasets for this study to assess the neurophysiological basis of states of reduced arousal, namely sleep and general anesthesia.Study 1 - Anesthesia scalp EEG: All participants were informed and provided written consent in accordance with the local ethics committee (Regional Committees for Medical and Health Research Ethics in Oslo case number 2012/2015 and extension 2012/2015-8).Study 2 - Anesthesia intracranial EEG: All participants were informed and provided written consent in accordance with the local ethics committee (Regional Committees for Medical and Health Research Ethics in Oslo case number 2012/2015 and extension 2012/2015-8).Study 3 - Sleep scalp EEG: All participants were informed and provided written consent in accordance with the local ethics committee (Berkeley Committee for Protection of Human Subjects Protocol Number 2010-01-595).Study 4 - Sleep intracranial EEG: All patients provided informed consent according to the local ethics committees of the University of California at Berkeley and at Irvine (University of California at Berkeley Committee for the Protection of Human Subjects Protocol Number 2010-01-520; University of California at Irvine Institutional Review Board Protocol Number 2014-1522, UCB relies on UCI Reliance Number 1817) and gave their written consent before data collection.

Version history

  1. Received: January 12, 2020
  2. Accepted: July 6, 2020
  3. Accepted Manuscript published: July 28, 2020 (version 1)
  4. Version of Record published: July 31, 2020 (version 2)

Copyright

© 2020, Lendner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,862
    views
  • 1,611
    downloads
  • 210
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Janna Desiree Lendner
  2. Randolph F Helfrich
  3. Bryce A Mander
  4. Luis Romundstad
  5. Jack J Lin
  6. Matthew P Walker
  7. Pal G Larsson
  8. Robert T Knight
(2020)
An electrophysiological marker of arousal level in humans
eLife 9:e55092.
https://doi.org/10.7554/eLife.55092

Share this article

https://doi.org/10.7554/eLife.55092

Further reading

    1. Neuroscience
    Cristina Sáenz de Miera, Nicole Bellefontaine ... Carol F Elias
    Research Article

    The hypothalamic ventral premammillary nucleus (PMv) is a glutamatergic nucleus essential for the metabolic control of reproduction. However, conditional deletion of leptin receptor long form (LepRb) in vesicular glutamate transporter 2 (Vglut2) expressing neurons results in virtually no reproductive deficits. In this study, we determined the role of glutamatergic neurotransmission from leptin responsive PMv neurons on puberty and fertility. We first assessed if stimulation of PMv neurons induces luteinizing hormone (LH) release in fed adult females. We used the stimulatory form of designer receptor exclusively activated by designer drugs (DREADDs) in LeprCre (LepRb-Cre) mice. We collected blood sequentially before and for 1 hr after intravenous clozapine-N-oxide injection. LH level increased in animals correctly targeted to the PMv, and LH level was correlated to the number of Fos immunoreactive neurons in the PMv. Next, females with deletion of Slc17a6 (Vglut2) in LepRb neurons (LeprΔVGlut2) showed delayed age of puberty, disrupted estrous cycles, increased gonadotropin-releasing hormone (GnRH) concentration in the axon terminals, and disrupted LH secretion, suggesting impaired GnRH release. To assess if glutamate is required for PMv actions in pubertal development, we generated a Cre-induced reexpression of endogenous LepRb (LeprloxTB) with concomitant deletion of Slc17a6 (Vglut2flox) mice. Rescue of Lepr and deletion of Slc17a6 in the PMv was obtained by stereotaxic injection of an adeno-associated virus vector expressing Cre recombinase. Control LeprloxTB mice with PMv LepRb rescue showed vaginal opening, follicle maturation, and became pregnant, while LeprloxTB;Vglut2flox mice showed no pubertal development. Our results indicate that glutamatergic neurotransmission from leptin sensitive neurons regulates the reproductive axis, and that leptin action on pubertal development via PMv neurons requires Vglut2.

    1. Neuroscience
    Zahra Ghasemahmad, Aaron Mrvelj ... Jeffrey J Wenstrup
    Research Article

    The basolateral amygdala (BLA), a brain center of emotional expression, contributes to acoustic communication by first interpreting the meaning of social sounds in the context of the listener’s internal state, then organizing the appropriate behavioral responses. We propose that modulatory neurochemicals such as acetylcholine (ACh) and dopamine (DA) provide internal-state signals to the BLA while an animal listens to social vocalizations. We tested this in a vocal playback experiment utilizing highly affective vocal sequences associated with either mating or restraint, then sampled and analyzed fluids within the BLA for a broad range of neurochemicals and observed behavioral responses of adult male and female mice. In male mice, playback of restraint vocalizations increased ACh release and usually decreased DA release, while playback of mating sequences evoked the opposite neurochemical release patterns. In non-estrus female mice, patterns of ACh and DA release with mating playback were similar to males. Estrus females, however, showed increased ACh, associated with vigilance, as well as increased DA, associated with reward-seeking. Experimental groups that showed increased ACh release also showed the largest increases in an aversive behavior. These neurochemical release patterns and several behavioral responses depended on a single prior experience with the mating and restraint behaviors. Our results support a model in which ACh and DA provide contextual information to sound analyzing BLA neurons that modulate their output to downstream brain regions controlling behavioral responses to social vocalizations.