Quantitative analyses reveal extracellular dynamics of Wnt ligands in Xenopus embryos

  1. Yusuke Mii  Is a corresponding author
  2. Kenichi Nakazato
  3. Chan-Gi Pack
  4. Takafumi Ikeda
  5. Yasushi Sako
  6. Atsushi Mochizuki
  7. Masanori Taira  Is a corresponding author
  8. Shinji Takada
  1. National Institute for Basic Biology, Japan
  2. RIKEN, Japan
  3. University of Tokyo, Japan
  4. Kyoto University, Japan
  5. National Institutes of Natural Sciences, Japan

Abstract

The mechanism of intercellular transport of Wnt ligands is still a matter of debate. To better understand this issue, we examined the distribution and dynamics of Wnt8 in Xenopus embryos. While Venus-tagged Wnt8 was found on the surfaces of cells close to Wnt-producing cells, we also detected its dispersal over distances of 15 cell diameters. A combination of fluorescence correlation spectroscopy and quantitative imaging suggested that only a small proportion of Wnt8 ligands diffuses freely, whereas most Wnt8 molecules are bound to cell surfaces. Fluorescence decay after photoconversion showed that Wnt8 ligands bound on cell surfaces decrease exponentially, suggesting a dynamic exchange of bound forms of Wnt ligands. Mathematical modelling based on this exchange recapitulates a graded distribution of bound, but not free, Wnt ligands. Based on these results, we propose that Wnt distribution in tissues is controlled by a dynamic exchange of its abundant bound and rare free populations.

Data availability

Sequence data for anti-HA IgG genes have been deposited in Genbank/DDBJ under accession codes LC522514 and LC522515.

The following data sets were generated

Article and author information

Author details

  1. Yusuke Mii

    Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Japan
    For correspondence
    mii@nibb.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1907-5665
  2. Kenichi Nakazato

    Theoretical Biology Laboratory, RIKEN, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Chan-Gi Pack

    Cellular Informatics Laboratory, RIKEN, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6578-3099
  4. Takafumi Ikeda

    Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Yasushi Sako

    Cellular Informatics Laboratory, RIKEN, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Atsushi Mochizuki

    Department of Biosystems Science, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Masanori Taira

    Department of Biological Sciences, University of Tokyo, Tokyo, Japan
    For correspondence
    m-taira.183@g.chuo-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
  8. Shinji Takada

    Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4125-6056

Funding

Japan Science and Technology Agency (JPMJPR194B)

  • Yusuke Mii

Japan Society for the Promotion of Science (24870031)

  • Yusuke Mii

Japan Society for the Promotion of Science (15K14532)

  • Yusuke Mii

Japan Society for the Promotion of Science (18K14720)

  • Yusuke Mii

Japan Society for the Promotion of Science (17K19418)

  • Shinji Takada

Japan Society for the Promotion of Science (24657147)

  • Yusuke Mii
  • Masanori Taira

National Institutes of Natural Sciences (1311608,01311801)

  • Yusuke Mii

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments using Xenopus laevis were approved by the Institutional Animal Care and Use Committee, National Institutes of Natural Sciences (Permit Number 18A038, 19A062, 20A053), or the Office for Life Science Research Ethics and Safety, University of Tokyo.

Copyright

© 2021, Mii et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,122
    views
  • 273
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yusuke Mii
  2. Kenichi Nakazato
  3. Chan-Gi Pack
  4. Takafumi Ikeda
  5. Yasushi Sako
  6. Atsushi Mochizuki
  7. Masanori Taira
  8. Shinji Takada
(2021)
Quantitative analyses reveal extracellular dynamics of Wnt ligands in Xenopus embryos
eLife 10:e55108.
https://doi.org/10.7554/eLife.55108

Share this article

https://doi.org/10.7554/eLife.55108

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.

    1. Developmental Biology
    2. Genetics and Genomics
    Mehul Vora, Jonathan Dietz ... Cathy Savage-Dunn
    Research Article

    Smads and their transcription factor partners mediate the transcriptional responses of target cells to secreted ligands of the transforming growth factor-β (TGF-β) family, including those of the conserved bone morphogenetic protein (BMP) family, yet only a small number of direct target genes have been well characterized. In C. elegans, the BMP2/4 ortholog DBL-1 regulates multiple biological functions, including body size, via a canonical receptor-Smad signaling cascade. Here, we identify functional binding sites for SMA-3/Smad and its transcriptional partner SMA-9/Schnurri based on ChIP-seq peaks (identified by modEncode) and expression differences of nearby genes identified from RNA-seq analysis of corresponding mutants. We found that SMA-3 and SMA-9 have both overlapping and unique target genes. At a genome-wide scale, SMA-3/Smad acts as a transcriptional activator, whereas SMA-9/Schnurri direct targets include both activated and repressed genes. Mutations in sma-9 partially suppress the small body size phenotype of sma-3, suggesting some level of antagonism between these factors and challenging the prevailing model for Schnurri function. Functional analysis of target genes revealed a novel role in body size for genes involved in one-carbon metabolism and in the endoplasmic reticulum (ER) secretory pathway, including the disulfide reductase dpy-11. Our findings indicate that Smads and SMA-9/Schnurri have previously unappreciated complex genetic and genomic regulatory interactions that in turn regulate the secretion of extracellular components like collagen into the cuticle to mediate body size regulation.